Penerapan Teknologi Ekstraksi Oleoresin Jahe (Zingiber Officinale) Ramah Lingkungan dan Konvensional

Authors

  • Nanda Aurelia Salsabila S Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.55606/jpikes.v5i3.6164

Keywords:

Bioactive Compounds, Extraction Method, Extraction Results, Ginger Oleoresin, Green Extraction

Abstract

Ginger waste, including peel and residue from herbal extract or beverage industries, still contains valuable bioactive compounds such as gingerol, shogaol, and zingerone. These compounds have significant potential as multifunctional bioactive ingredients in food, pharmaceutical, and cosmetic applications. This review aims to summarize and compare various extraction methods for ginger oleoresin from waste materials, including conventional techniques (maceration and Soxhlet) and advanced green extraction methods such as Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE), and Supercritical CO₂ Extraction (SC-CO₂). The findings indicate that modern extraction techniques offer higher yield, shorter processing time, and greater selectivity of active compounds compared to traditional methods. Process modifications, including enzymatic pretreatment and three-phase partitioning, have been shown to enhance oleoresin recovery and quality. Key challenges include the development of green solvents, optimization of process parameters, and preservation of bioactive stability. Further research is needed to establish efficient and sustainable extraction approaches suitable for natural product research.

Downloads

Download data is not yet available.

References

Ahmadi, S., Pardis Kian, S., & Moghaddas, M. (2025). Response surface methodology applied to the supercritical carbon dioxide extraction of Zingiber officinale oleoresin. International Journal of New Chemistry, 2025(5), 972–994. http://www.ijnc.ir/

Ali, K., Flare, A., & Flinn, G. (2024). An overview of the traditional and modern applications of ginger. JHSciRes, 10(1), 10–16. https://doi.org/10.5281/zenodo.13254798

Alvarez-Rivera, G., Bueno, M., Ballesteros-Vivas, D., Mendiola, J. A., & Ibañez, E. (2020). Pressurized liquid extraction. In Liquid-phase extraction (pp. 375–398). Elsevier. https://doi.org/10.1016/B978-0-12-816911-7.00013-X

Barik, R., Sugunan, S., & Shafri, M. A. B. M. (2024). Pressurized liquid extraction for the isolation of bioactive compounds (pp. 275–298). https://doi.org/10.1007/978-1-0716-3601-5_12

Barp, L., Višnjevec, A. M., & Moret, S. (2023). Pressurized liquid extraction: A powerful tool to implement extraction and purification of food contaminants. Foods, 12(10), 2017. https://doi.org/10.3390/foods12102017

Buvaneshwaran, M., Radhakrishnan, M., & Natarajan, V. (2023). Influence of ultrasound-assisted extraction techniques on the valorization of agro-based industrial organic waste: A review. Journal of Food Process Engineering, 46(6). https://doi.org/10.1111/jfpe.14012

Cárdenas-Toro, F. P., Meza-Coaquira, J. H., Gonzalez-Gonzalez, M., Carrera, C., & Fernández Barbero, G. (2025). Supercritical CO₂ extraction of oleoresin from Peruvian ginger (Zingiber officinale Roscoe): Extraction yield, polyphenol content, antioxidant capacity, chemical analysis and storage stability. Molecules, 30(5), 1013. https://doi.org/10.3390/molecules30051013

Chen, M., Lin, E., Xiao, R., Li, Z., Liu, B., & Wang, J. (2024). Structural characteristic, strong antioxidant, and anti-gastric cancer investigations on an oleoresin from ginger (Zingiber officinale var. roscoe). Foods, 13(10), 1498. https://doi.org/10.3390/foods13101498

Dalsasso, R. R., Valencia, G. A., & Monteiro, A. R. (2022). Impact of drying and extraction processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Research International, 154, 111043. https://doi.org/10.1016/j.foodres.2022.111043

Darekar, S. U., Nagrale, S. N., Babar, V. B., & Pondkule, A. (2023). Review on ginger: Chemical constituents and biological effects. Journal of Pharmacognosy and Phytochemistry, 12(6), 267–271. https://doi.org/10.22271/phyto.2023.v12.i6c.14792

Gamage, K., Dissanayake, C., Angoda, W., Waliwita, L. C., & Liyanage, R. P. (2020). A review on medicinal uses of Zingiber officinale (ginger). International Journal of Health Sciences and Research, 10(6), 1–8. www.ijhsr.org

Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable seaweed technologies (pp. 171–189). Elsevier. https://doi.org/10.1016/B978-0-12-817943-7.00006-8

Gonzalez-Gonzalez, M., Yerena-Prieto, B. J., Carrera, C., Vázquez-Espinosa, M., González-de-Peredo, A. V., García-Alvarado, M. Á., Palma, M., Rodríguez-Jimenes, G. del C., & Barbero, G. F. (2023). Optimization of an ultrasound-assisted extraction method for the extraction of gingerols and shogaols from ginger (Zingiber officinale). Agronomy, 13(7), 1787. https://doi.org/10.3390/agronomy13071787

Hidayat, R., & Wulandari, P. (2021). Methods of extraction: Maceration, percolation, and decoction. Eureka Herba Indonesia, 2(1), 73–79. https://doi.org/10.37275/ehi.v2i1.15

Hu, J., Guo, Z., Glasius, M., Kristensen, K., Xiao, L., & Xu, X. (2011). Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: An efficient and sustainable approach. Journal of Chromatography A, 1218(34), 5765–5773. https://doi.org/10.1016/j.chroma.2011.06.088

Islam, M., Malakar, S., Rao, M. V., Kumar, N., & Sahu, J. K. (2023). Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: A review. Food Science and Biotechnology, 32(13), 1763–1782. https://doi.org/10.1007/s10068-023-01346-6

Ko, M. J., Nam, H. H., & Chung, M. S. (2019). Conversion of 6-gingerol to 6-shogaol in ginger (Zingiber officinale) pulp and peel during subcritical water extraction. Food Chemistry, 270, 149–155. https://doi.org/10.1016/j.foodchem.2018.07.078

Li, H., Liu, Y., Luo, D., Ma, Y., Zhang, J., Li, M., Yao, L., Shi, X., Liu, X., & Yang, K. (2019). Ginger for health care: An overview of systematic reviews. Complementary Therapies in Medicine, 45, 114–123. https://doi.org/10.1016/j.ctim.2019.06.002

López-Bascón, M. A., & Luque de Castro, M. D. (2020). Soxhlet extraction. In Liquid-phase extraction (pp. 327–354). Elsevier. https://doi.org/10.1016/B978-0-12-816911-7.00011-6

Lozano Pérez, A. S., Lozada Castro, J. J., & Guerrero Fajardo, C. A. (2024). Application of microwave energy to biomass: A comprehensive review of microwave-assisted technologies, optimization parameters, and strengths and weaknesses. Journal of Manufacturing and Materials Processing, 8(3), 121. https://doi.org/10.3390/jmmp8030121

Łubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. Applied Sciences, 12(7), 3232. https://doi.org/10.3390/app12073232

Mahboubi, M. (2019). Zingiber officinale Rosc. essential oil: A review on its composition and bioactivity. Clinical Phytoscience, 5(1), 6. https://doi.org/10.1186/s40816-018-0097-4

Maled, S. B., Bhat, A. R., Hegde, S., Sivamani, Y., Muthuraman, A., & Elayaperumal, S. (2024). Enzyme-assisted extraction (pp. 173–200). https://doi.org/10.1007/978-1-0716-3601-5_8

Md Sarip, M. S., Morad, N. A., Mohamad Ali, N. A., Mohd Yusof, Y. A., & Che Yunus, M. A. (2014). The kinetics of extraction of the medicinal ginger bioactive compounds using hot compressed water. Separation and Purification Technology, 124, 141–147. https://doi.org/10.1016/j.seppur.2014.01.008

Moret, S., Conchione, C., Srbinovska, A., & Lucci, P. (2019). Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods, 8(10), 503. https://doi.org/10.3390/foods8100503

Nagendra Chari, K. L., Manasa, D., Srinivas, P., & Sowbhagya, H. B. (2013). Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry, 139(1–4), 509–514. https://doi.org/10.1016/j.foodchem.2013.01.099

Nakib, M. E., & Aytaç, S. (2024). Ultrasonic-assisted extraction (UAE) of bioactive compounds: Mechanisms, benefits, applications, and synergistic approaches. In Molecular Biology and Genetics (Vol. 11).

Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12), 4299–4315. https://doi.org/10.1007/s13197-020-04433-2

Raynie, D. (2019). Looking at the past to understand the future: Soxhlet extraction.

Said, P. P., Arya, O. P., Pradhan, R. C., Singh, R. S., & Rai, B. N. (2015). Separation of oleoresin from ginger rhizome powder using green processing technologies. Journal of Food Process Engineering, 38(2), 107–114. https://doi.org/10.1111/jfpe.12127

Samuel, A., Musa, A. E., Senchi, B. Z., Itodo, S. D., & Kamba, I. N. (2023). Extraction and characterization of oleoresin from ginger (Zingiber officinale Roscoe) rhizomes using blends of monohydric alcohols. Chemistry Research Journal, 8(3), 76–80.

Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568. https://doi.org/10.1016/j.phytochem.2015.07.012

Shaukat, M. N., Nazir, A., & Fallico, B. (2023). Ginger bioactives: A comprehensive review of health benefits and potential food applications. Antioxidants, 12(11), 2015. https://doi.org/10.3390/antiox12112015

Sulejmanović, M., Rojo, S. R., Mourtzinos, I., Kyriakoudi, A., Nastić, N., Travičić, V., & Vidović, S. (2025). Green and innovative pressurized liquid extraction as a tool for ginger (Zingiber officinale) herbal dust bioactive compounds recovery. Sustainable Chemistry and Pharmacy, 46, 102083. https://doi.org/10.1016/j.scp.2025.102083

Supardan, M. D., Fuadi, A., Nurul Alam, P., Arpi, N., & Dani, M. (2011). Solvent extraction of ginger oleoresin using ultrasound. Makara Journal of Science, 15(2). https://doi.org/10.7454/mss.v15i2.1066

Swamy, M. K., & Akhtar, M. S. (2019). Natural bio-active compounds. Springer. https://doi.org/10.1007/978-981-13-7205-6

Syarif, R. A., Faradiba, F., Alyanti, T. K., & Savitri, T. A. (2024). GC-MS analysis of ginger rhizome with various extraction methods. Jurnal Fitofarmaka Indonesia, 11(3), 107–114. https://doi.org/10.33096/jffi.v11i1.1184

Tayebwa, A. (2025). Dye extraction from waste textile using supercritical carbon dioxide (ScCO₂) technology.

Temmante, K., Chaachouay, N., Benkhnigue, O., & Azeroual, A. (2025). Ginger (Zingiber officinale Roscoe, Zingiberaceae). In Comprehensive guide to hallucinogenic plants (pp. 394–410). CRC Press. https://doi.org/10.1201/9781003460336-49

Teng, H., Seuseu, K. T., Lee, W.-Y., & Chen, L. (2019). Comparing the effects of microwave radiation on 6-gingerol and 6-shogaol from ginger rhizomes (Zingiber officinale Rosc). PLOS ONE, 14(6), e0214893. https://doi.org/10.1371/journal.pone.0214893

Thanigaivel, S., Vidhya Hindu, S., Vijayakumar, S., Mukherjee, A., Chandrasekaran, N., & Thomas, J. (2015). Differential solvent extraction of two seaweeds and their efficacy in controlling Aeromonas salmonicida infection in Oreochromis mossambicus: A novel therapeutic approach. Aquaculture, 443, 56–64. https://doi.org/10.1016/j.aquaculture.2015.03.010

Uthirapathy, S., Ahamad, J., & Naim, M. J. (2023). Oleoresins containing food spices. In Analysis of food spices (pp. 29–48). CRC Press. https://doi.org/10.1201/9781003279792-4

Uwineza, P. A., & Waśkiewicz, A. (2020). Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules, 25(17), 3847. https://doi.org/10.3390/molecules25173847

Varakumar, S., Umesh, K. V., & Singhal, R. S. (2017). Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three-phase partitioning. Food Chemistry, 216, 27–36. https://doi.org/10.1016/j.foodchem.2016.07.180

Wang, N., Zhu, H., Wang, M., Zhao, S., Sun, G., & Li, Z. (2025). Recent advancements in microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology, 18(3), 2083–2100. https://doi.org/10.1007/s11947-024-03574-y

Zhang, Y., Yang, S., Li, W., Li, X., Lai, X., Li, X., Xiong, W., & Zhang, B. (2025). Optimized high-pressure ultrasonic-microwave-assisted extraction of gingerol from ginger: Process design and performance evaluation. Processes, 13(7), 2149. https://doi.org/10.3390/pr13072149

Downloads

Published

2025-11-10

How to Cite

Nanda Aurelia Salsabila S. (2025). Penerapan Teknologi Ekstraksi Oleoresin Jahe (Zingiber Officinale) Ramah Lingkungan dan Konvensional. Jurnal Pengabdian Ilmu Kesehatan, 5(3), 370–391. https://doi.org/10.55606/jpikes.v5i3.6164

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.