

Energy Audit to Optimize Electrical Energy Consumption at Siti Khodijah Sepanjang Hospital Sidoarjo using The Analytical Hierarchy Process Method

Mochamad Hadi Saputra¹, Muhamad Haddin², Arief Marwanto^{3*}

¹⁻³ Post Graduated Department of Electrical Engineering, Universitas Islam Sultan Agung (UNISSULA), Semarang, Indonesia

*Corresponding author: arief@unissula.ac.id

Abstract: Siti Khodijah Hospital, type B hospital, is one of Muhammadiyah's health charities which is located in 260 Pahlawan Road, Sepanjang, Sidoarjo, East Java. The majority of the operating activities in this hospital use electrical energy, such as the use of medical equipment and other medical equipment that requires the consumption of electrical energy with a large enough capacity. The use of the AHP (Analytical Hierarchy Process) method has the aim of obtaining optimal results in making a decision, namely by simplifying a complex problem that is not structured and systematic. The results of this energy audit are able to provide new ideas to the hospital head through savings programs designed based on the 4M+1E concept (Man, Machine, Method, Material and Environment). The implementation of the results of this study can reduce the cost of using electrical energy by 14%, which is IDR 375,800,000 of the year's electricity costs.

Keywords: Demand side management, Energy audit, Electrical energy consumption, Analytical Hierarchy, Process Optimization.

1. INTRODUCTION

The requirement for electrical energy in Indonesia is increasing along with the development of technology and industry. Based on data from State Electricity Company's 2019 annual report book that the amount of electrical energy sold in 2019 was 245,518 GWh, an increase of 3,6% from 234,618 GWh in 2018. The increase in electricity sales was due to increased sales of electricity in other customer segments (7.5 %), business customer segment (6,5%), and household customer segment (6%). Based on the 2015 report from the Minister of Energy and Mineral Resources of the Republic of Indonesia, it shows that energy management activities have been carried out in various energy user sectors, especially in Indonesia, one of which is the Hospital.

In the first annual report of Siti Khadijah Sepanjang Hospital, electrical energy consumption exceeds the planned target, especially in the 6-floor Main Building which has an installed power capacity of 550 kVA, because it is used as a vital facility for patient service activities from the emergency room, inpatient care, and ward operation, the demand for and consumption of electricity at the facility is very large and is of particular concern to management. For this reason, management is committed to making savings by first conducting an Energy Audit.

The purpose of this study is to identify the source of electrical energy used by the hospital, conduct an energy audit to find out how much electrical energy is used to operate each month, identify what forms of electricity waste are in Siti Khadijah Hospital Sepanjang, and find out what tools are used. requires the largest electricity supply in its use, as well as providing alternative suggestions for what the company will do, especially in saving electricity consumption and for efficient use of electrical energy.

The use of the AHP method aims to optimize decision making by simplifying an unstructured complex problem. Then the level of importance of each variable is given a numerical value relative to the other variables. From these various considerations, a synthesis is then carried out to determine the variables that have high priority and play a role in influencing the results of the system. In addition, the AHP method is able to provide validity up to the tolerance limit for the inconsistency of various criteria and selected alternatives as well as the durability or resilience of the output sensitivity analysis of decision making in the Energy Audit.

2. METHOD

The energy management system is a method of continuous energy efficiency improvement by integrating energy efficiency activities into the existing management system, so that it can take into account cost, environmental, energy availability and business risk factors.

Research describes that energy audit is a technique used to calculate the amount of energy consumption in a building and identify ways to save it. AHP (Analytical Hierarchy Process) is a decision-making method that describes a complex multi-factor or multi-criteria problem into a hierarchy. while energy conservation can be explained as efficient and rational use of energy, without reducing the use of required energy.

Research discusses energy audits in industrial buildings in Klaten, Central Java. This study uses the Energy Consumption Intensity approach, which is the amount of electricity used per square meter of the building area during a certain period. The building area in this study is 3201,2 m². Meanwhile, the consumption of electrical energy during the period of January 2016 to December 2016 was 738744 kWh. Based on this research, confirmed that the value of energy consumption intensity is 230,7 kWh/m² per year, whereas the category is wastefully used of electrical energy.

Research was carried out in a school building. The results showed that every building that uses air conditioning cooling gets an energy consumption intensity value of $8,95 \text{ kWh/m}^2$. This still meets room efficiency standards. On the other hand, the part rooms that does not use air conditioning cooling gets an energy consumption intensity of $3,18 \text{ kWh/m}^2$, this shows that the use of electrical energy in a room without air conditioning is still quite wasteful.

Based on the three literature reviews above, then energy management activities in an organized company using management principles are carried out through energy audits.

Energy Audit

Energy audit is the process of evaluating energy users and identifying energy saving opportunities as well as recommendations for improving efficiency for users of energy sources and energy users in the context of energy conservation. Energy audits are carried out at least on the main energy processes and users on a regular basis at least once every three years. The audit process can be carried out by internal or external auditors.

Energy audit is divided into 3 levels. Level 1, namely data collection activities (general), short visual observations, and interviews. The initial audit is the second level of the energy audit activity level. This activity is intended to find out the potential for energy savings that is more complete than a level one audit, the data and information used are based on measurement results, identify sources of energy wastage and simple actions that can be taken to improve energy efficiency in the short term. Detailed energy audit is the 3rd and highest level of energy audit activity. This audit is more in-depth with a wider scope, the recommendations are based on engineering studies in a clear order of priority.

Analytical Hierarchy Process (AHP)

The Analytical Hierarchy Process (AHP) is a method for solving a complex, unstructured situation into several components in a hierarchical arrangement, by assigning subjective values to the relative importance of each variable, and determining which variable has the highest priority in order to influence the outcome of the situation. The decision-making process is basically choosing the best alternative. Such as structuring the problem, determining alternatives, determining possible values for aleatory variables, setting values, time preference requirements, and specification of risks. No matter how wide the range of alternatives that can be determined or the detailed assessment of possible values, the limitation that still surrounds is the basis for comparison in the form of a single criterion. The steps of AHP process are shown in figure 1.

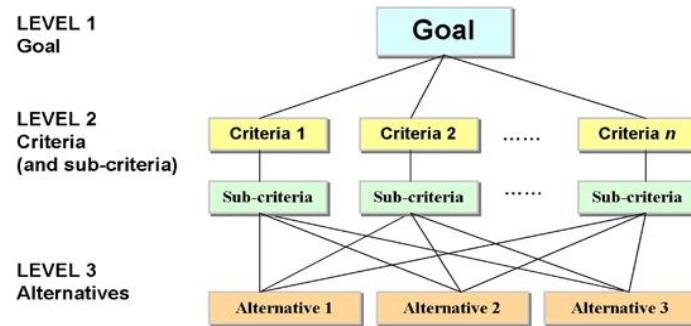


Figure 1. AHP process

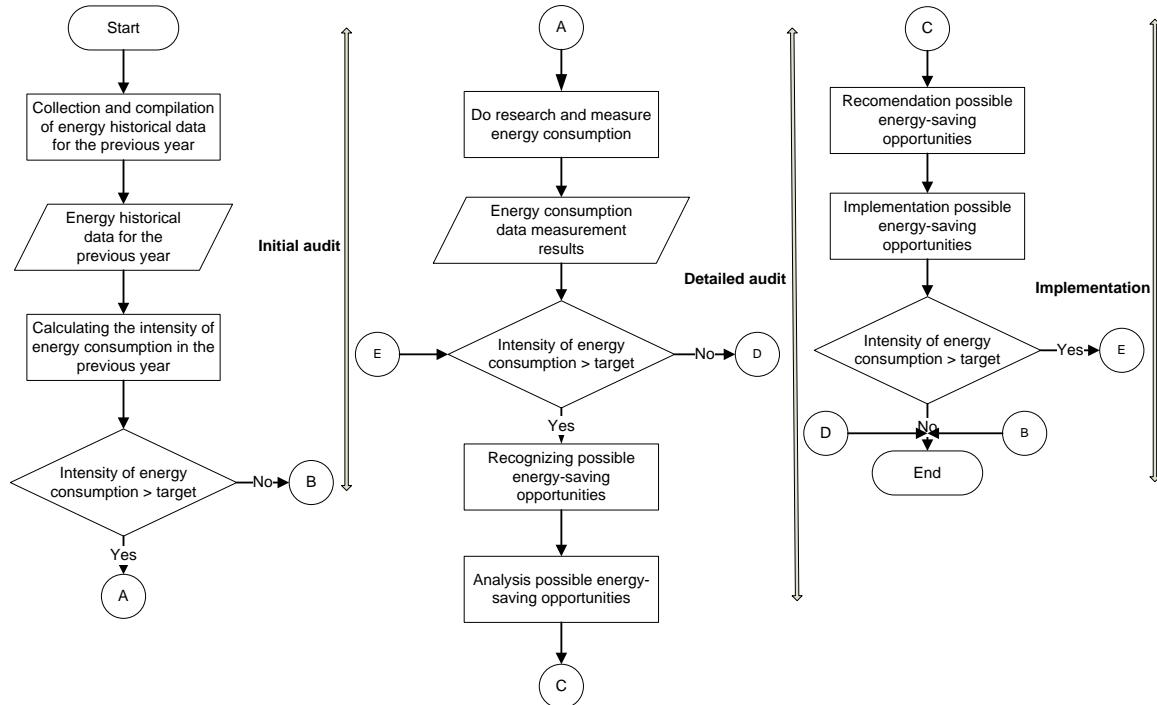


Figure 2. Energy audit process flowchart

- Defining problems and setting goals. If AHP is used to select alternatives or set alternative priorities, at this stage the development of alternatives is carried out.
- Arrange problems into a hierarchy. So, the problems can be viewed from a detailed and measurable perspective.
- Prioritization for each problem element in the hierarchy. This process generates the weight or contribution of the element to the achievement of the goal so that the element with the highest weight has priority for handling. Priority is generated from a pairwise comparison matrix between all elements at the same hierarchical level.
- Perform consistency testing on comparisons between elements obtained at each level of the hierarchy.

$$\lambda_{max} = \frac{\text{Total Eigen Max}}{\text{Number Order matrix}} \quad (1)$$

$$CI \text{ (Consistency Index)} = \frac{\lambda_{max}-n}{n-1} \quad (2)$$

$$CR \text{ (Consistency Ratio)} = \frac{CI}{RI} \quad (3)$$

Where λ_{max} means data normalization, n indicates amount of data normalization, and RI is ratio index.

Lightning Analysis Method

Electrical load is a component that requires electrical energy. Equation 4 shows how to determine the number of light points in a room.

$$N = \frac{E \cdot L \cdot W}{\phi \cdot LLF \cdot CU \cdot n} \quad (4)$$

$$\phi = \frac{E \cdot A}{K_p \cdot K_d} \quad (5)$$

$$\phi_0 = \frac{E \cdot A}{n} \quad (6)$$

Where N is the number of light points in a room, E indicates the light intensity (lux), L and W are the length and width of the room (meters), ϕ indicates the level of light lumens, LLF is Light Loss Factor (0.7 – 0.8), CU is the Coefficient of Utilization (50% – 65%), n shown the number of lights, K_p and K_d means usage and depreciation coefficient. The estimated lumen intensity data based on the type and power of the lamp is shown in table 1 and 2.

Table 1. Luminance Data based on Type and Power of The Lamp

Lumen	Incandescent Lamps (Watt)	Halogen Lamps (Watt)	CFL (Watt)	LED (Watt)
450	40	28	9	6-8
800	60	42	12	9-11
1100	75	53	15	13-15
1600	100	70	20	18-20

Table 2. Table of Lighting Strength in Buildings

Buldings	Lightning Strength (Lux)
Office / Restaurant / Store / Shop	200 – 500
Apartment	100 – 250
Hotel	200 – 400
Hospital / School	200 – 800
Basement Apartment / Toilet / Corridor / Hall / Warehouse / Lobby	100 – 200

3. RESULTS AND DISCUSSION

The calculation of the electrical load is used to determine the cost of using electrical energy in terms of the pattern of its use every day. To find out the amount of electricity usage, it can be seen by observing the pattern of activities carried out by employees in working according to a predetermined schedule, interviews with the person in charge of the area and direct observations as well as through theoretical studies based on existing theories, it is found

that the difference in load usage time is due to different work patterns and activity intensity in each area.

Real Energy Usage Analysis Per Day

Calculation of real energy use per day is obtained by determining the total hours of use in one day multiplied by the total power. The analytical value can be seen in table 3. From the calculation of real energy consumption per day in the building, it was found that the Cathlab Equipment and the electricity distribution on the roof floor consumed the most energy, respectively 981.6 kW and 981.12 kW.

Energy Consumption Intensity Value Analysis

Energy consumption intensity is the term used to define the energy consumption of the system (building). The IKE value can be found by dividing the total energy consumed by the building in one year by the total gross floor area of the building.

From the calculation of the intensity of energy consumption in several areas, the result is that there are several floors that exceed the energy consumption intensity standard for hospitals (> 380), including:

- Equipment Cathlab with energy consumption 532,9
- Roof electricity distribution (Water Treatment Plant) 532,7

Electrical Energy Analysis in Lighting Systems

Based on the results of lighting measurements carried out at 7 points (table 5), the results obtained light intensity of 4 - 359 lux. 7 items are considered to meet the lighting standards according to table 2.

Table 3. Total Real Energy Consumption per Day in Hospital Building

Panel	Loc.	Burden (Watt)	F K %	Load (Watt)	Total Real Energy Consumption per Day (kW)	Total Hours	Peak Load (Hours)	Out. Peak Load (Hours)	Power Peak Load (kWh)	Power Out. Peak Load (kWh)	Total Power Consumption (kWh per Day)
Pump AB	Base ment	10000	0,5	5000	5	8	3	5	15,00	25,00	40,00
SDP Pump	Pump Room	29000	0,8	23200	23	8	3	5	69,60	116,00	185,60
PP B	Base ment	2200	0,7	1540	2	24	5	19	7,70	29,26	36,96
LP 1	1st Flo	14100	0,7	9870	10	24	5	19	49,35	187,53	236,88
PPAC 1	1st Flo	20100	0,8	16080	16	24	5	19	80,40	305,52	385,92
LP 2	2nd Flo	14600	0,7	10220	10	24	5	19	51,10	194,18	245,28
PPAC 2	2nd Flo	25000	0,8	20000	20	24	5	19	100,00	380,00	480,00
LP 3	3rd Flo	14800	0,7	10360	10	24	5	19	51,80	196,84	248,64
PPAC 3	3rd Flo	24900	0,8	19920	20	24	5	19	99,60	378,48	478,08

LP 4	4th Flo	11500	0, 7	8050	8	24	5	19	40,25	152,95	193,20
PPAC 4	4th Flo	24900	0, 8	19920	20	24	5	19	99,60	378,48	478,08
PPICU 4	4th Flo	7400	0, 7	5180	5	24	5	19	25,90	98,42	124,32
LP 5	5th Flo	8200	0, 7	5740	6	24	5	19	28,70	109,06	137,76
PPAC 5	5th Flo	27000	0, 8	21600	22	24	5	19	108	410,40	518,40
PP CSSD	5th Flo	50600	0, 7	35420	35	12	3	9	106,26	318,78	425,04
PPICU 5	5th Flo	5500	0, 7	3850	4	24	5	19	19,25	73,15	92,40
LP 6	6th Flo	8000	0, 7	5600	6	24	5	19	28,00	106,40	134,40
PPAC 6	6th Flo	28600	0, 8	22880	23	24	5	19	114,40	434,72	549,12
PP CATH LAB	Rooftop	81800	1	81800	82	12	3	9	245,40	736,2	981,60
SDP	Rooftop	58400	0, 7	40880	41	24	5	19	204,40	776,72	981,12
Total		46660 0		36711 0	367	424	92	332	1544,7 1	5408,0 9	6952,80

Table 4. Calculation of the Intensity of Energy Consumption Intensity (ECI) of Hospital Buildings

Location	Actual Power								ECI
	Total Hour s	Pea k Loa d	Out. Pea k Loa d	Peak Load Power (kWh)	Out. Peak Load Power (kWh)	Total Power Consumpti on (kWh per year)	Buildi ng Wide		
Clean Water and Drain Pump (Basement)	8	3	5	15	25	14.400	663	21,71 946	
Clean Water Pump and Regional STP	8	3	5	69,6	116	66.816	663	100,7	
Lightning and Contacts (Basement)	24	5	19	7,7	29,26	13305,6	663	20,0	
Lightning and Contacts (1st Floor)	24	5	19	49,35	187,53	85276,8	663	128,6	
AC and Mechanical Ventilation (1st Floor)	24	5	19	80,4	305,52	138931,2	663	209,5	
Lightning and Contacts (2nd Floor)	24	5	19	51,1	194,18	88300,8	663	133,1	
AC and Mechanical Ventilation (2nd Floor)	24	5	19	100	380	172800	663	260,6	
Lightning and Contacts (3rd Floor)	24	5	19	51,8	196,84	89510,4	663	135,0	
AC and Mechanical Ventilation (3rd Floor)	24	5	19	99,6	378,48	172108,8	663	259,5	
Lightning and Contacts (4th Floor)	24	5	19	40,25	152,95	69552	663	104,9	
AC and Mechanical Ventilation (4th Floor)	24	5	19	99,6	378,48	172108,8	663	259,5	
Equipment ICU (4th Floor)	24	5	19	25,9	98,42	44755,2	663	67,50	
Lightning and Contacts (5th Floor)	24	5	19	28,7	109,06	49593,6	663	74,80	
AC and Mechanical Ventilation (5th Floor)	24	5	19	108	410,4	186624	663	281,4	
Equipment CSSD (Central Sterile Supply Department) (5th Floor)	12	3	9	106,26	318,78	153014,4	663	230,7	
Equipment ICU (5th Floor)	24	5	19	19,25	73,15	33264	663	50,17	
Lightning and Contacts (6th Floor)	24	5	19	28	106,4	48384	663	72,9	
AC and Mechanical Ventilation (6th Floor)	24	5	19	114,4	434,72	197683,2	663	298,1	
Equipment CATHLAB (Rooftop)	12	3	9	245,4	736,2	353376	663	532,9	
Electric Distribution (Rooftop)	24	5	19	204,4	776,72	353203,2	663	532,7	

The 7 locations are ICU room, operating room, inpatient room, lobby, pharmacy, and office. While other items still have to go through a review process, because these items have not reached the standard target.

Table 5. Lighting Intensity Measurement Value

Rooms	Test Point	Lightning Source	Window Area (m ²)	Light Intensity (Lux)		Measurement Type (General/Local)
				Result	Standart	
ICU	Middle Area	Synthetic	-	310	200-800	Local
Doctor's Room	Middle Area	Synthetic	1,104	225	200-800	Local
Inpatient	Middle Area	Synthetic	0,913	230	200-800	Local
Surgery room	Middle Area	Synthetic	-	380	200-800	Local
Office	Middle Area	Synthetic	5,5	205	200-800	Local
Corridor	Middle Area	Synthetic	-	210	200-800	Local
Pharmacy	Middle Area	Synthetic	5,5	205	200-800	Local

Criteria Consistency Test Results

The following are the stages of determining the weight of the criteria and validity (consistency test between criteria): Create a pairwise comparison matrix in decimal, Determine the Eigen value, Determine priority weight, Calculating Total Amount, Divide each column by the total number, Calculating synthesis weight, Calculating Eigen max, Calculating (Lambda) max, Calculating CI (Consistency Index), and Calculating CR (Consistency Ratio).

Table 6. Pairwise Comparison Matrix in Decimal

Pairwise comparison matrix in decimal				0,2			
Criteria	Employee Behavior	Operational Pattern	Technology	Standard Operational Use of Electricity	Number of Equipment	Eigen Value	Priority Weight
Employee Behavior	1,000	0,200	7,000	5,000	5,000	2,0362	0,2635
Operational Pattern	5,000	1,000	7,000	7,000	5,000	4,1460	0,5365
Technology	0,143	0,143	1,000	2,000	5,000	0,7277	0,0942
Standard Operational	0,200	0,143	0,500	1,000	0,333	0,3432	0,0444
Number of Equipment	0,200	0,200	0,200	3,000	1,000	0,4743	0,0614
Total Number	6,5429	1,6857	15,7000	18,0000	16,3333	7,7274	1,0000

Each column is summed to then normalize the results of pairwise comparisons (value equals one). The normalized rows are summed and divided by a number of columns to get the Eigen Vector (EV) value.

Table 7. Synthesis Weight and Maximum Eigen

Divide each column by the total number						
Employee Behavior	Operational Pattern	Technology	Standard Operational Use of Electricity	Number of Equipment	Synthesis Weight	Max Eigen (X)
0,1528	0,1186	0,4459	0,2778	0,3061	1,3012	4,9383
0,7642	0,5932	0,4459	0,3889	0,3061	2,4983	4,6563
0,0218	0,0847	0,0637	0,1111	0,3061	0,5875	6,2386
0,0306	0,0847	0,0318	0,0556	0,0204	0,2231	5,0237
0,0306	0,1186	0,0127	0,1667	0,0612	0,3898	6,3515
Total						27,2084

From the calculation results, the EV value for each criterion is obtained. To calculate the consistency of these values, a Consistency Ratio (CR) is calculated. And to get the CR value, it is necessary to calculate the Consistency Index (CI). The CI calculation is as follows:

$$\lambda_{max} = \frac{\text{Total Eigen Max}}{\text{Number Order matrix}} = \frac{27,2084}{5} = 5,4417$$

$$CI (\text{Consistency Index}) = \frac{\lambda_{max} - n}{n - 1} = \frac{5,4417 - 5}{5 - 1} = \frac{0,4417}{4} = 0,1104$$

To determine the IR (Ratio Index), pay attention to the data in the table, based on the Random Index table by Saaty based on the order matrix. From the calculation results, the CR value is less than 0,1 or 10%, so the comparison results are considered consistent.

Table 8. Random Saaty Index based on Order of Matrix

N	1	2	3	4	5	6	7	8	9	10	11
R ₁	0,00	0,00	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,49	1,51

The Random Index for the 5x5 order matrix is equal to 1,12.

$$CR (\text{Consistency Ratio}) = \frac{CI}{RI} = \frac{0,1104}{1,12} = 0,0986$$

AHP Method Implementation Results

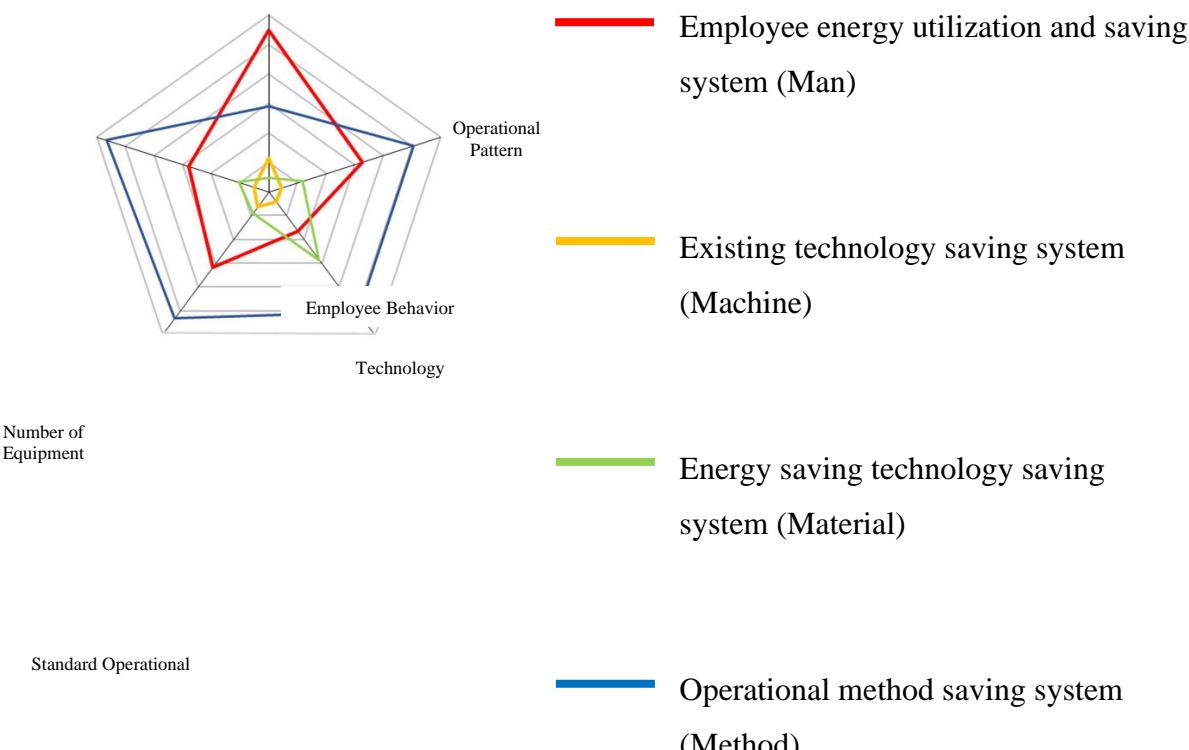
After making pairwise comparisons and testing the consistency between the criteria, the next step is to compile a summary of the results of the application of the AHP method, while the results of the implementation are shown in table 9.

Table 9. Summary of AHP Implementation Results

Summary	Employee Behavior		Operational Pattern		Technology		Standard Operational Use of Electricity		Number of Equipment		Final Score
	Weight	Score	Weight	Score	Weight	Score	Weight	Score	Weight	Score	
Man	0,260	0,547	0,500	0,328	0,118	0,164	0,045	0,317	0,078	0,279	0,362
Machine	0,260	0,115	0,500	0,046	0,118	0,042	0,045	0,063	0,078	0,050	0,065
Material	0,260	0,047	0,500	0,120	0,118	0,286	0,045	0,089	0,078	0,104	0,117
Method	0,260	0,291	0,500	0,506	0,118	0,508	0,045	0,531	0,078	0,567	0,456

Based on table 9, refer that the results of the calculations using the AHP method are as follows.

- The Man factor is the employee's energy utilization and saving system equal to 0,362
- Machine factor, namely the existing technology saving system (as is Condition) equal to 0,065
- Material factor, which is an energy-efficient technology saving system equal to 0,117
- Methode factor, namely the operational method savings system is equal to 0,456


From these data, it can be concluded that the method factor, namely the operational method saving system, is the highest result with a value of 0.456, followed by the Man factor, namely the employee energy utilization and saving system with a value of 0.362, so these two items will be the main focus for energy efficiency programs. Data plot data can be seen in Figure 3.

Energy Saving Implementation

Based on the results of the implementation of the AHP method, the next energy saving program can be arranged based on priorities, namely Capital Expenditure with the order of the smallest value with the fastest payback period. The list of energy saving programs for the next 5 years at Siti Khadijah Sepanjang Hospital is shown in table 10.

Based on table 10, Siti Khadijah Sepanjang Hospital will implement a priority energy efficiency program based on the results of the analysis of the AHP method, namely the Man factor (employee energy utilization and saving system) and Method (operational method saving system) in items 5, 8, 16, and 17.

From table 11, it was decided that the total savings was IDR 375.800.000. Thus, the savings obtained are 14% of Year-to-Date (YTD) costs as shown in table 12.

Figure 3. Radar graph of the distribution of calculated data using the AHP method

Table 10. Siti Khadijah Hospital Energy Efficiency Data

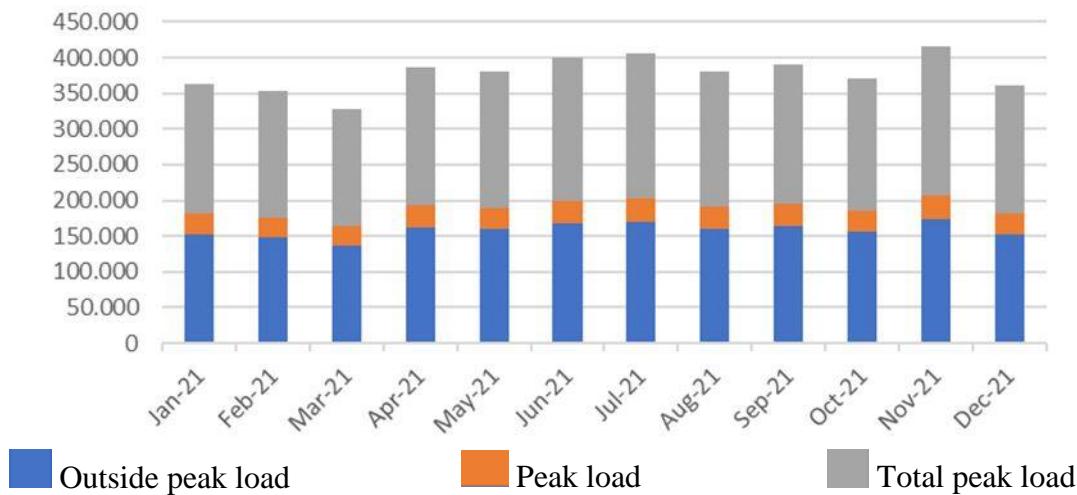

Factor	Description of Opportunity	Capital Cost (IDR)	Potential Payback	Saving Actual	
				Bill (IDR)	Power Saving (kWh)
Material	Capacitor bank installation	120.000.000	0,67	120.000.000	88.889
Material	Replacement of TL to LED	600.000.000	2	63.600.000	47.111
Material	Inverter installation in server room	200.000.000	1,8	216.000.000	160.000
Material	Timer installation in office	50.000.000	1,2	42.000.000	31.111
Man	Turning off the lights during breaks		-	4.200.000	3.111
Material	Replacement of AC non-inverter to inverter	48.000.000	1,6	19.200.000	14.222
Machine	Overhaul genset	60.000.000	1,3	48.000.000	35.556
Method	Turn off the lights in an empty room, min 2 hours		-	12.600.000	9.333
Material	Using sensors in lighting systems	15.000.000	0,8	9.600.000	7.111
Material	Using standing AC	50.000.000	0,7	8.400.000	6.222
Material	Genset optimization		-	6.000.000	4.444
Material	Reducing the number of genset standby backup		-	4.200.000	3.111
Material	Reducing genset utilization		-	3.084.000.000	2.284.444
Material	Soft starter in fuel pump	10.000.000	0,6	19.200.000	14.222
Material	Maintenance genset		-	14.400.000	10.667
Method	Genset switch to grid	45.000.000	0,4	114.000.000	84.444
Method	Shifting the operational pattern of the load	15.000.000	-	245.000.000	181.481
Total		1.213.000.000		4.030.400.000	2.985.481

Table 11. Results of Implementing Energy Saving Opportunities at Buildings

No	Factor	Activity	Saving (IDR)	Power Saving (kWh)	Progress
1	Man	Turning off the lights during breaks	42.600.000	31.566	Done
2	Method	Power cuts on Sundays and holidays for at least 2 hours	21.000.000	15.556	Done
3	Method	Switching the generator to PLN at the power house	114.000.000	84.444	Done
4	Method	Shift operational patterns from peak load time to off peak load time without reducing productivity	245.000.000	77.778	Done
Total			375.800.000	174.667	

Table 12. Electricity Cost Saving Results

Month	Energy Bill (IDR)	Power Outside Peak Load Time (kWh)	Power Peak Load Time (kWh)	Power Usage (kWh)
Jan -21	214.919.985	152.419	29.053	181.472
Feb-21	208.558.132	148.161	28.021	176.182
Mar-21	193.583.972	137.212	26.220	163.432
Apr-21	228.480.993	161.928	30.861	192.789
May-21	225.480.993	159.431	30.805	190.236
Jun-21	237.045.080	167.283	32.605	199.888
Jul-21	239.955.621	169.844	32.661	202.506
Aug-21	225.482.253	159.927	30.469	190.396
Sep-21	231.078.308	163.313	31.621	194.934
Oct-21	219.344.705	155.637	29.597	185.234
Nov-21	241.936.571	174.398	33.110	207.508
Dec-21	213.738.549	152.395	28.341	180.736
Total	2.679.445.211	1.901.949	363.365	2.265.314
Average	223.287.101	158.496	30.280	188.776
Saving	375.800.000			
Percentage	14%			

Figure 4. Graph of power consumed (peak load + outside peak load) (kWh) against electricity costs

4. CONCLUSION

From the results of the audit process using the AHP method and the implementation of savings opportunities, it can be concluded that as follows:

1. Based on the existing load data, it is known that the electricity usage at Siti Khadijah Sepanjang Hospital is quite large with an average year-to-date electricity bill of IDR 2,679,445,211. While, power usage is equal to 2,265,314 kWh, consisting of 1,901,949 kWh outside of power peak time and 363,365 kWh inside of power peak time usage.
2. The results of calculations with the AHP method obtained a hierarchy of results as follows:
 - a. The Man factor, namely the employee's energy utilization and saving system, is equal to 0,362
 - b. Machine factor, namely the existing technology saving system (as is condition), is equal to 0,065
 - c. Material factor, namely energy saving technology system, is equal to 0,117
 - d. Methode factor, namely the operational method savings system, is equal to 0,456
3. The results of the implementation of savings with the program proposed in this study are able to shift operations from inside to outside peak load times in hospitals. This has managed to contribute IDR 245,000,000 annually.
4. The results of the implementation of savings with the method and man factors are IDR 130,800,000. Thus, the total cost savings is IDR 375,800,000, equivalent to 14% of the year-to-date electricity costs

ACKNOWLEDGEMENTS

Author thanks to Post Graduated Department of Electrical Engineering University Islam of Sultan Agung (UNISSULA) in Semarang for equipment needed to complete this project. The author also would like to thank RS Siti Khodijah for all the data which has been provided and provides access permission for this research.

REFERENCES

Al-Ghaili, A. M., et al. (2021). Energy management systems and strategies in buildings sector: A scoping review. *IEEE Access*, 9, 63790–63813. <https://doi.org/10.1109/ACCESS.2021.3075485>

Andreolli, F., et al. (2022). An AHP model for multiple-criteria prioritization of seismic retrofit solutions in gravity-designed industrial buildings. *Journal of Building Engineering*, 45, 103493. <https://doi.org/10.1016/j.jobe.2021.103493>

Billah, M., et al. (2023). Decentralized smart energy management in hybrid microgrids: Evaluating operational modes, resources optimization, and environmental impacts. *IEEE Access*, 11, 143530–143548. <https://doi.org/10.1109/ACCESS.2023.3343466>

Bosse, S. (2018). Energy management and distribution. In *Material-integrated intelligent systems: Technology and applications* (pp. 423–448). Wiley. <https://doi.org/10.1002/9783527679249.ch19>

De Vizia, C., et al. (2022). A user-centric view of a demand side management program: From surveys to simulation and analysis. *IEEE Systems Journal*, 16(2), 1885–1896. <https://doi.org/10.1109/JSYST.2021.3135236>

Dinh, H. T., Yun, J., Kim, D. M., Lee, K.-H., & Kim, D. (2020). A home energy management system with renewable energy and energy storage utilizing main grid and electricity selling. *IEEE Access*, 8, 49436–49450. <https://doi.org/10.1109/ACCESS.2020.2979189>

Dhurkari, R. K. (2024). Improving the prescriptive power of analytic hierarchy process. *IEEE Transactions on Engineering Management*, 71, 7456–7466. <https://doi.org/10.1109/TEM.2023.3281402>

Elattar, E. E., & ElSayed, S. K. (2020). Probabilistic energy management with emission of renewable micro-grids including storage devices based on efficient salp swarm algorithm. *Renewable Energy*, 153, 23–35. <https://doi.org/10.1016/j.renene.2020.01.144>

Hossfeld, T., et al. (2024). Analysis of energy intensity and generic energy efficiency metrics in communication networks: Limits, practical applications, and case studies. *IEEE Access*, 12, 105527–105549. <https://doi.org/10.1109/ACCESS.2024.3435716>

Javaid, N., et al. (2017). A new heuristically optimized home energy management controller for smart grid. *Sustainable Cities and Society*, 34, 211–227. <https://doi.org/10.1016/j.scs.2017.06.009>

Jogunola, O., et al. (2022). Energy consumption in commercial buildings in a post-COVID-19 world. *IEEE Engineering Management Review*, 50(1), 54–64. <https://doi.org/10.1109/EMR.2022.3146591>

Mahbub, T. N., Hossain, S. S., Akash, R. A., Reza, S. M. S., & Tasnim, Z. (2021). Implementing fuzzy analytical hierarchy process (FAHP) to measure malicious behaviour of codes in smart meter. In *Proceedings of the 2021 2nd International Conference on Robotics, Electrical Signal Processing Technology (ICREST)* (pp. 90–94). <https://doi.org/10.1109/ICREST51555.2021.9331027>

Mohammed, H. J., et al. (2021). Assessment of sustainable renewable energy technologies using analytic hierarchy process. *IOP Conference Series: Earth and Environmental Science*, 779(1), 012038. <https://doi.org/10.1088/1755-1315/779/1/012038>

Niu, X., & Liu, Y. (2024). Research on control strategy based on analytic hierarchy process. In *Proceedings of the 2024 6th International Conference on Energy Systems and Electrical Power (ICESEP)* (pp. 359–363). <https://doi.org/10.1109/ICESEP62218.2024.10652144>

Palomar, E., Bravo, I., & Cruz, C. (2023). Household energy demand management. In *Energy smart appliances: Applications, methodologies, and challenges* (pp. 65–92). IEEE. <https://doi.org/10.1002/9781119899457.ch3>

Pramanik, P. K. D., et al. (2019). Power consumption analysis, measurement, management, and issues: A state-of-the-art review of smartphone battery and energy usage. *IEEE Access*, 7, 182113–182172. <https://doi.org/10.1109/ACCESS.2019.2958684>

Psillaki, M., et al. (2023). Hospitals' energy efficiency in the perspective of saving resources and providing quality services through technological options: A systematic literature review. *Energies*, 16(2), 755. <https://doi.org/10.3390/en16020755>

Raghav, L. P., et al. (2022). Analytic hierarchy process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid. *Applied Energy*, 306, 118058. <https://doi.org/10.1016/j.apenergy.2021.118058>

River Publishers. (2022). *Advanced control and optimization paradigms for energy system operation and management* (pp. i–xxx). <http://ieeexplore.ieee.org/document/9903774>

Sapari, N. M., et al. (2023). Analytical hierarchy process (AHP) analysis for load shedding scheme in islanded distribution system connected with mini hydro generation. In *Proceedings of the 2023 IEEE Conference on Energy Conversion (CENCON)* (pp. 120–125). <https://doi.org/10.1109/CENCON58932.2023.10369420>

Sallam, A. A., & Malik, O. P. (2019). Demand-side management and energy efficiency. In *Electrical Distribution Systems* (pp. 429–463). IEEE. <https://doi.org/10.1002/9781119509332.ch16>

Zhong, Y., et al. (2021). Comprehensive evaluation strategy of optimal operation mode of integrated energy system based on analytic hierarchy process. In *Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2)* (pp. 1479–1484). <https://doi.org/10.1109/EI252483.2021.9713176>

Zhou, Y., et al. (2022). Research on evaluation model based on analytic hierarchy process and entropy weight method for smart grid. In *Proceedings of the 2022 5th International Conference on Energy, Electrical Power Engineering (CEEPE)* (pp. 729–...).

Zou, Y., Xu, Y., & Zhang, C. (2023). A risk-averse adaptive stochastic optimization method for transactive energy management of a multi-energy microgrid. *IEEE Transactions on Sustainable Energy*, 14(3), 1599–1611. <https://doi.org/10.1109/TSTE.2023.3240184>