Klasifikasi Penyakit Daun Tomat Menggunakan Algoritma K-NN Berdasarkan Ekstraksi Fitur GLCM dan LBP
DOI:
https://doi.org/10.55606/jutiti.v4i1.3417Keywords:
Classification, Tomato, K-Nearest Neighbor, Gray Level Co-Occurrence Matrix, Local Binary PatternAbstract
Tomatoes are widely cultivated in Indonesia and are one of the crops with high economic value. According to the Central Bureau of Statistics, the Indonesian nation has the capacity to produce up to 1. 17 million tons of tomatoes in 2020. Tomatoes contain ingredients that the body needs. Additionally, grapes can also be consumed in different forms. However, tomato production in Indonesia decreased from 2013 to 2015 due to the spread of pests. Therefore, we conducted a study to classify tomato leaf diseases using the K-nearest neighbor method based on the grayscale coexistence matrix and the extraction of local binary pattern features. The data used was 9157 data obtained from the Plant Village database and classified into 6 classes (healthy, spot fungus, late blight, leaf mold, mosaic virus, spider mite, and target spot). The testing process was performed using the K-fold cross-validation technique, followed by performance calculations using the confusion matrix method. The highest accuracy was obtained at 86.8% when classifying using K9 and K10 with a precision value 40.6% and recall 49.2% when classifying using a value of K = 9, and precision 49.7% and recall of 49.3% when classifying using a value of K = 10.
Downloads
References
Alivianingsih, Y., Pramudi, M. I., & Fitriyanti, D. (2020). Efektivitas Rendaman Kulit Bawang Merah Terhadap Hama Daun Tomat Pada Masa Vegetatif. Proteksi Tanaman Tropika, 3(2), 200-203.
Alwy, A. D., Wahid, M. S., Ag, B. N., & Fakhri, M. M. (2023). Klasifikasi Penyakit Pada Padi Dengan Ekstraksi Fitur LBP dan GLCM. JOURNAL OF DEEP LEARNING, COMPUTER VISION AND DIGITAL IMAGE PROCESSING, 1(1), 1-10.
Amardita, R. S., Adiwijaya, & Purbolaksono, M. D. (2022). Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN. JURIKOM (Jurnal Riset Komputer), 9(1), 62-68.
Dinata, R. K., Fajriana, Zulfa, & Hasdyna, N. (2020). KLASIFIKASI SEKOLAH MENENGAH PERTAMA/SEDERAJAT WILAYAH BIREUEN MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS BERBASIS WEB. CESS (Journal of Computer Engineering System and Science), 5(1), 33-37.
Fikriah, F. K., Sulthan, M. B., Mujahidah, N., & Roziqin, M. K. (2022). (GLCM), Naïve Bayes untuk Klasifikasi Penyakit Daun Bawang Merah Berdasarkan Ekstraksi Fitur Gray Level Co-occurrence Matrix. Jurnal Komtika (Komputasi dan Informatika), , 6(2), 133-141.
Hadi, A. S. (2023). KHASIAT BUAH TOMAT (Solanum lycopersicum) BERPOTENSI SEBAGAI OBAT BERBAGAI JENIS PENYAKIT. Empiris: Journal of Progressive Science and Mathematics, 1(1), 7-15.
Laksono, P., Harliana, & Prabowo, T. (2023). Deteksi Tumor Otak Melalui Penerapan GLCM dan Naïve Bayes Classification. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 41(48), 41-48.
Lamasgi, Z. Y., Serwin, Lasena, Y., & Husdi. (2022). Identifikasi Tingkat Kesegaran Ikan Tuna Menggunakan Metode GLCM dan KNN. Jambura Journal of Electrical and Electronics Engineering, 4(1), 70-76.
Maskuri, M. N., Harliana, Sukerti, K., & Bhakti, R. H. (2022). Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 4(1), 130-140.
Muhathir, Santoso, M. H., & Larasati, D. A. (2021). Wayang Image Classification Using SVM Method and GLCM Feature Extraction. JITE (Journal of Informatics and Telecommunication Engineering), 4(2), 373-382.
Neneng, Putri, N. U., & Susanto, E. R. (2020). Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern. CYBERNETICS, 4(2), 93-100.
Raysyah, S., Arinal, V., & Mulyana, D. I. (2021). KLASIFIKASI TINGKAT KEMATANGAN BUAH KOPI BERDASARKAN DETEKSI WARNA MENGGUNAKAN METODE KNN DAN PCA. JSiI | Jurnal Sistem Informasi, 8(2), 88-95.
Saleh, A. (2022). Pendeteksian Penggunaan Masker Untuk Pencegahan Penyebaran Covid-19 Menggunakan Algoritma K-nearest neighbor. Jurnal TEKESNOS, 4(1), 278-283.
Sanjaya, S., Adzkia, U., Handayani, L., & Yanto, F. (2020). Local Binary Pattern and Learning Vector Quantization for Classification of Principal Line of Palm-Hand. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 3(2), 71 – 77.
Saputra, R. H., Hariyono, R. C., & Fathulloh. (2023). Deteksi Penyakit Tomat Melalui Citra Daun menggunakan Metode Convolutional Neural Network. Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC), 5(1), 43-51.
Tangkelayuk, A., & Mailoa, E. (2022). Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes Dan Decision Tree. Jurnal Teknik Informatika dan Sistem Informasi, 9(2), 1109-1119.
Yulianto, A. P., & Darwis, S. (2021). Penerapan Metode K-Nearest Neighbors (kNN) pada Bearing. Journal Riset Statistika, 10-18.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.