Analisis Sentimen Opini Publik pada Channel Youtube Mata Najwa Menggunakan Metode SVM
DOI:
https://doi.org/10.55606/jutiti.v5i2.5426Keywords:
Sentiment analysis, SVM, Mata Najwa, Women in PowerAbstract
The rapid development of social media, particularly the YouTube platform, has created an active and open space for public discourse. One prominent example is the program "Mata Najwa", which frequently discusses important societal issues. The episode titled "Retno Marsudi & Sri Mulyani: Women in Power Mata Najwa" garnered significant attention, sparking a variety of responses from netizens in the comments section. This study aims to explore public sentiment toward female leadership by utilizing the Support Vector Machine (SVM) classification method. A total of 4,626 comments from Najwa Shihab’s YouTube channel on the aforementioned episode were analyzed through several stages, including data preprocessing, sentiment labeling using a lexicon-based approach, feature extraction via the TF-IDF method, and classification using the SVM algorithm. The model evaluation demonstrated excellent performance, with an accuracy of 95.36%, precision of 95.70%, recall of 95.36%, and an F1-score of 95.27%. The model accurately identified positive and neutral comments but showed a limitation in detecting negative comments, likely due to class imbalance. This study offers new insights into public perceptions in digital spaces and reaffirms the effectiveness of SVM in text-based sentiment analysis.
Downloads
References
Ansori, Y., & Holle, K. F. H. (2022). Perbandingan Metode Machine Learning dalam Analisis Sentimen Twitter. Jurnal Sistem dan Teknologi Informasi (JustIN), 10(4), 429. https://doi.org/10.26418/justin.v10i4.51784
Ardiansyah, D., Saepudin, A., Aryanti, R., Fitriani, E., & Royadi. (2023). Analisis Sentimen Review Pada Aplikasi Media Sosial Tiktok Menggunakan Algoritma K-NN Dan SVM Berbasis PSO. Jurnal Informatika Kaputama (JIK), 7(2), 233–241. https://doi.org/10.59697/jik.v7i2.148
Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147–156. https://doi.org/10.25126/jtiik.0813944
Aryasatya, A. A. D., & Nuryana, I. K. D. (2023). Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru. Journal of Informatics and Computer Science, 05(01), 97–100.
Atmajaya, D., Febrianti, A., & Darwis, H. (2023). Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter. The Indonesian Journal of Computer Science, 12(4), 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341
Aulia, T. M. P., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139–145. https://doi.org/10.31598/sintechjournal.v4i2.762
Dwicahyo, K., & Indah Ratnasari, C. (2023). Perbandingan Metode Web Scraping Dalam Pengambilan Data: Kajian Literatur. Automata, 4(2).
Fide, S., Suparti, & Sudarno. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (SVM) Dan Asosiasi. Jurnal Gaussian, 10(3), 346–358. https://doi.org/10.14710/j.gauss.v10i3.32786
Herwinsyah, & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Sistem Informasi dan Informatika (Simika), 5(1), 59–67. https://doi.org/10.47080/simika.v5i1.1411
Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830
Imran, B., Karim, M. N., & Ningsih, N. I. (2024). Klasifikasi Berita Hoax Terkait Pemilihan Umum Presiden Republik Indonesia Tahun 2024 Menggunakan Naïve Bayes Dan Svm. Dinamika Rekayasa, 20(1), 1–9. https://doi.org/10.20884/1.dinarek.2024.20.1.27
Kusuma, I. H., & Cahyono, N. (2023). Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 302–307. https://doi.org/10.30591/jpit.v8i3.5734
Manullang, O., & Prianto, C. (2023). Analisis Sentimen dalam Memprediksi Hasil Pemilu Presiden dan Wakil Presiden : Systematic Literature Review. Jurnal Informatika Dan Teknologi Komputer (JICOM), 4(2), 104–113. https://ejurnalunsam.id/index.php/jicom/
Maulana, B. A., Fahmi, M. J., Imran, A. M., & Hidayati, N. (2024). Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM). MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 375–384. https://doi.org/10.57152/malcom.v4i2.1206
Mualfah, D., Ramadhoni, Gunawan, R., & Mulyadipa Suratno, D. (2023). Analisis Sentimen Komentar YouTube TvOne Tentang Ustadz Abdul Somad Dideportasi Dari Singapura Menggunakan Algoritma SVM. Jurnal Fasilkom, 13(01), 72–80. https://doi.org/10.37859/jf.v13i01.4920
Muhammadin, A., & Sobari, I. A. (2021). Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM Dan NBC. Reputasi: Jurnal Rekayasa Perangkat Lunak, 2(2), 85–91. https://doi.org/10.31294/reputasi.v2i2.785
Muhayat, T., Fauzi, A., & Indra, D. J. (2023). Analisis Sentimen Terhadap Komentar Video Youtube Menggunakan Support Vector Machines. Progresif: Jurnal Ilmiah Komputer, 19(1), 231–240.
Nuraliza, H., Pratiwi, O. N., & Hamami, F. (2022). Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance. Jurnal Mirai Manajemen, 7(1), 1–17.
Nurhidayat, R., & Dewi, K. E. (2023). Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek. Komputa : Jurnal Ilmiah Komputer dan Informatika, 12(1), 91–100. https://doi.org/10.34010/komputa.v12i1.9458
Pratiwi, A. A., & Kamayani, M. (2024). Perbandingan Pelabelan Data dalam Analisis Sentimen Kurikulum Proyek di platform TikTok : Pendekatan Naïve Bayes. Jurnal Eksplora Informatika, 14(1), 96–107. https://doi.org/10.30864/eksplora.v14i1.1093
Resa Arif Yudianto, M., Sukmasetya, P., Abul Hasani, R., & Sasongko, D. (2022). Pengaruh Data Preprocessing terhadap Imbalanced Dataset pada Klasifikasi Citra Sampah menggunakan Algoritma Convolutional Neural Network. Building of Informatics, Technology and Science (BITS), 4(3), 1367–1375. https://doi.org/10.47065/bits.v4i3.2575
Sinulingga, J. E. B., & Sitorus, H. C. K. (2024). Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF. Jurnal Manajemen Informatika (JAMIKA), 14(1), 42–53. https://doi.org/10.34010/jamika.v14i1.11946
Suharsono, J. P., & Nurahman, D. (2024). Pemanfaatan Youtube Sebagai Media Peningkatan Pelayanan Dan Informasi. Ganaya : Jurnal Ilmu Sosial dan Humaniora, 7(1), 298–304. https://doi.org/10.37329/ganaya.v7i1.3157
Syafia, A. N., Hidayattullah, M. F., & Suteddy, W. (2023). Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 207–212. https://doi.org/10.30591/jpit.v8i3.5064
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




