Analisis Sentimen Opini Publik pada Channel Youtube Mata Najwa Menggunakan Metode SVM

Authors

  • Asmara Andhini Universitas Duta Bangsa Surakarta
  • Fadilah Nuria Handayani Universitas Duta Bangsa Surakarta
  • Intan Diasih Universitas Duta Bangsa Surakarta
  • Nurmalitasari Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.55606/jutiti.v5i2.5426

Keywords:

Sentiment analysis, SVM, Mata Najwa, Women in Power

Abstract

The rapid development of social media, particularly the YouTube platform, has created an active and open space for public discourse. One prominent example is the program "Mata Najwa", which frequently discusses important societal issues. The episode titled "Retno Marsudi & Sri Mulyani: Women in Power Mata Najwa" garnered significant attention, sparking a variety of responses from netizens in the comments section. This study aims to explore public sentiment toward female leadership by utilizing the Support Vector Machine (SVM) classification method. A total of 4,626 comments from Najwa Shihab’s YouTube channel on the aforementioned episode were analyzed through several stages, including data preprocessing, sentiment labeling using a lexicon-based approach, feature extraction via the TF-IDF method, and classification using the SVM algorithm. The model evaluation demonstrated excellent performance, with an accuracy of 95.36%, precision of 95.70%, recall of 95.36%, and an F1-score of 95.27%. The model accurately identified positive and neutral comments but showed a limitation in detecting negative comments, likely due to class imbalance. This study offers new insights into public perceptions in digital spaces and reaffirms the effectiveness of SVM in text-based sentiment analysis.

Downloads

Download data is not yet available.

References

Ansori, Y., & Holle, K. F. H. (2022). Perbandingan Metode Machine Learning dalam Analisis Sentimen Twitter. Jurnal Sistem dan Teknologi Informasi (JustIN), 10(4), 429. https://doi.org/10.26418/justin.v10i4.51784

Ardiansyah, D., Saepudin, A., Aryanti, R., Fitriani, E., & Royadi. (2023). Analisis Sentimen Review Pada Aplikasi Media Sosial Tiktok Menggunakan Algoritma K-NN Dan SVM Berbasis PSO. Jurnal Informatika Kaputama (JIK), 7(2), 233–241. https://doi.org/10.59697/jik.v7i2.148

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147–156. https://doi.org/10.25126/jtiik.0813944

Aryasatya, A. A. D., & Nuryana, I. K. D. (2023). Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru. Journal of Informatics and Computer Science, 05(01), 97–100.

Atmajaya, D., Febrianti, A., & Darwis, H. (2023). Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter. The Indonesian Journal of Computer Science, 12(4), 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341

Aulia, T. M. P., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139–145. https://doi.org/10.31598/sintechjournal.v4i2.762

Dwicahyo, K., & Indah Ratnasari, C. (2023). Perbandingan Metode Web Scraping Dalam Pengambilan Data: Kajian Literatur. Automata, 4(2).

Fide, S., Suparti, & Sudarno. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (SVM) Dan Asosiasi. Jurnal Gaussian, 10(3), 346–358. https://doi.org/10.14710/j.gauss.v10i3.32786

Herwinsyah, & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Sistem Informasi dan Informatika (Simika), 5(1), 59–67. https://doi.org/10.47080/simika.v5i1.1411

Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830

Imran, B., Karim, M. N., & Ningsih, N. I. (2024). Klasifikasi Berita Hoax Terkait Pemilihan Umum Presiden Republik Indonesia Tahun 2024 Menggunakan Naïve Bayes Dan Svm. Dinamika Rekayasa, 20(1), 1–9. https://doi.org/10.20884/1.dinarek.2024.20.1.27

Kusuma, I. H., & Cahyono, N. (2023). Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 302–307. https://doi.org/10.30591/jpit.v8i3.5734

Manullang, O., & Prianto, C. (2023). Analisis Sentimen dalam Memprediksi Hasil Pemilu Presiden dan Wakil Presiden : Systematic Literature Review. Jurnal Informatika Dan Teknologi Komputer (JICOM), 4(2), 104–113. https://ejurnalunsam.id/index.php/jicom/

Maulana, B. A., Fahmi, M. J., Imran, A. M., & Hidayati, N. (2024). Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM). MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 375–384. https://doi.org/10.57152/malcom.v4i2.1206

Mualfah, D., Ramadhoni, Gunawan, R., & Mulyadipa Suratno, D. (2023). Analisis Sentimen Komentar YouTube TvOne Tentang Ustadz Abdul Somad Dideportasi Dari Singapura Menggunakan Algoritma SVM. Jurnal Fasilkom, 13(01), 72–80. https://doi.org/10.37859/jf.v13i01.4920

Muhammadin, A., & Sobari, I. A. (2021). Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM Dan NBC. Reputasi: Jurnal Rekayasa Perangkat Lunak, 2(2), 85–91. https://doi.org/10.31294/reputasi.v2i2.785

Muhayat, T., Fauzi, A., & Indra, D. J. (2023). Analisis Sentimen Terhadap Komentar Video Youtube Menggunakan Support Vector Machines. Progresif: Jurnal Ilmiah Komputer, 19(1), 231–240.

Nuraliza, H., Pratiwi, O. N., & Hamami, F. (2022). Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance. Jurnal Mirai Manajemen, 7(1), 1–17.

Nurhidayat, R., & Dewi, K. E. (2023). Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek. Komputa : Jurnal Ilmiah Komputer dan Informatika, 12(1), 91–100. https://doi.org/10.34010/komputa.v12i1.9458

Pratiwi, A. A., & Kamayani, M. (2024). Perbandingan Pelabelan Data dalam Analisis Sentimen Kurikulum Proyek di platform TikTok : Pendekatan Naïve Bayes. Jurnal Eksplora Informatika, 14(1), 96–107. https://doi.org/10.30864/eksplora.v14i1.1093

Resa Arif Yudianto, M., Sukmasetya, P., Abul Hasani, R., & Sasongko, D. (2022). Pengaruh Data Preprocessing terhadap Imbalanced Dataset pada Klasifikasi Citra Sampah menggunakan Algoritma Convolutional Neural Network. Building of Informatics, Technology and Science (BITS), 4(3), 1367–1375. https://doi.org/10.47065/bits.v4i3.2575

Sinulingga, J. E. B., & Sitorus, H. C. K. (2024). Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF. Jurnal Manajemen Informatika (JAMIKA), 14(1), 42–53. https://doi.org/10.34010/jamika.v14i1.11946

Suharsono, J. P., & Nurahman, D. (2024). Pemanfaatan Youtube Sebagai Media Peningkatan Pelayanan Dan Informasi. Ganaya : Jurnal Ilmu Sosial dan Humaniora, 7(1), 298–304. https://doi.org/10.37329/ganaya.v7i1.3157

Syafia, A. N., Hidayattullah, M. F., & Suteddy, W. (2023). Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 207–212. https://doi.org/10.30591/jpit.v8i3.5064

Downloads

Published

2025-07-07

How to Cite

Asmara Andhini, Fadilah Nuria Handayani, Intan Diasih, & Nurmalitasari. (2025). Analisis Sentimen Opini Publik pada Channel Youtube Mata Najwa Menggunakan Metode SVM. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(2), 139–154. https://doi.org/10.55606/jutiti.v5i2.5426

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.