Pengaruh TIngkat Skala Keabuan Terhadap Akurasi Klasifikasi Jenis Ikan Melalui Citra Sisik Ikan Menggunakan Jaringan Syaraf Tiruan
DOI:
https://doi.org/10.55606/jutiti.v5i2.5796Keywords:
ANN, GLCM, Grayscale, Grayscale Levels, recognition accuracyAbstract
This study was conducted to examine the effect of grayscale image variations on the accuracy of fish species recognition by utilizing fish scale images through the Artificial Neural Network (ANN) method. Automatic fish species identification plays a crucial role in the fisheries sector, both for research purposes, marine resource monitoring, and trade processes. One factor that can influence recognition accuracy is the quality of image representation, including the grayscale level used. Therefore, this study aims to analyze how much grayscale level variations affect fish species classification results. This research method uses a dataset consisting of 180 scale images for each fish species. Of these, 150 images are used as training data and 30 images as test data. The feature extraction process is carried out using the Gray Level Co-occurrence Matrix (GLCM) method, which utilizes contrast, energy, homogeneity, correlation, and entropy parameters. These features are then used as input to the ANN for the classification process. The analysis was conducted by comparing the accuracy results of various grayscale levels, namely 16, 32, 64, 128, and 256 levels. The results showed that variations in grayscale significantly influenced the accuracy level of fish species recognition. The highest accuracy was obtained at a scale of 256 levels with a value of 96%, followed by a scale of 128 levels at 95%, 64 levels at 92.5%, 32 levels at 84.2%, and the lowest at 16 levels with an accuracy of only 82.5%. In conclusion, the higher the variation in grayscale levels used, the better the recognition accuracy obtained. Thus, the use of images with 256 grayscale levels is recommended for research on fish scale image classification using the ANN method because it is able to provide the most optimal results.
Downloads
References
A, S., Gasim, G., & Ricoida, D. I. (2021). Perbandingan Akurasi Pengenalan Kadar Semen Dan Pasir Berdasarkan Ukuran Citra Dengan Backpropagation. Jurnal Algoritme, 1(2), 121–133. https://doi.org/10.35957/algoritme.v1i2.891
Achmad, Y. F., Yulfitri, A., & Ulum, M. B. (2021). Identifikasi Jenis Jerawat Berdasarkan Tekstur Menggunakan GLCM dan Backpropagation. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 20(2), 139. https://doi.org/10.53513/jis.v20i2.4747
Afif Naufal, M., & Gasim, G. (2023). Identifikasi Kadar Ikan Pada Pempek Menggunakan Fitur GLCM dan SVM. Jurnal Algoritme, 3(1), 91–98. https://doi.org/10.35957/algoritme.v3i1.3363
Agustina, D., & Gasim, G. (2022). Identifikasi Kadar Ikan Pada Pempek Menggunakan Fitur LBP Dengan Metode Jaringan Syaraf Tiruan. Jurnal Algoritme, 2(2), 145–158. https://doi.org/10.35957/algoritme.v2i2.2364
Fadilah, F., Komarudin, A., & Melina. (2024). Prediksi Penjualan Obat Berbasis Artificial Neural Network (ANN). 1–23.
Indahsari, R. D., & Munawaroh, N. (2008). Implementasi Metode Huffman Untuk Kompresi Ukuran File Citra Bitmap 8 Bit Menggunakan Borland Delphi 6.0. Jurnal Ilmiah Teknologi Informasi Asia, 3(1), 61–82.
Junaidi, J., Mandasari, S., Franciska, Y., Fahmi, A., & Rosnelly, R. (2022). Implementasi Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Dalam Meramalkan Kebutuhan Handsanitizer Di Pemerintah Kota Medan. Journal of Science and Social Research, 5(3), 671. https://doi.org/10.54314/jssr.v5i3.1019
Kusanti, J., & Haris, N. A. (2018). Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut. Jurnal Informatika: Jurnal Pengembangan IT, 3(1), 1–6. https://doi.org/10.30591/jpit.v3i1.669
Maria, E., Yulianto, Y., Arinda, Y. P., Jumiaty, J., & Nobel, P. (2018). Segmentasi Citra Digital Bentuk Daun Pada Tanaman Di Politani Samarinda Menggunakan Metode Thresholding. Jurnal Rekayasa Teknologi Informasi (JURTI), 2(1), 37. https://doi.org/10.30872/jurti.v2i1.1377
Mubarokh, M. F., Nasir, M., & Komalasari, D. (2020). Jaringan Syaraf Tiruan Untuk Memprediksi Penjualan Pakaian Menggunakan Algoritma Backpropagation. Journal of Computer and Information Systems Ampera, 1(1), 29–43. https://doi.org/10.51519/journalcisa.v1i1.3
Ramadhani, F., Gasim, & Nazori, N. (2025). Perbandingan Akurasi Jarak Potret Untuk Pengenalan Jenis Bibit Mangga Metode JST-PB Dan Fitur GLCM. Bit-Tech, 7(3), 1022–1032. https://doi.org/10.32877/bt.v7i3.2303
Setiaji, B., & Huda, A. A. (2022). Implementasi Gray Level Co-Occurrence Matrix (GLCM) Untuk Klasifikasi Penyakit Daun Padi. Pseudocode, 9(1), 33–38. https://doi.org/10.33369/pseudocode.9.1.33-38
Situmorang, G. T., Widodo, A. W., & Rahman, M. A. (2019). Penerapan Metode Gray Level Co-occurrence Matrix ( GLCM ) untuk ekstraksi ciri pada telapak tangan. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(5), 4710–4716.
Ukkas, M. I., Kridalaksana, A. H., & Cenggoro, T. W. (2018). Pengenalan Pola Perilaku Seorang Manusia Dalam Permainan Suten Menggunakan Metode Jaringan Saraf Tiruan Propagasi Balik. Sebatik, 12(1), 1–8. https://doi.org/10.46984/sebatik.v12i1.63
Wilsen, E. B., Gasim, G., & Teguh, R. (2021). Perbandingan Akurasi Pengenalan Kadar Semen Berdasarkan Tingkat Pencahayaan Menggunakan Jaringan Syaraf Tiruan. Jurnal Algoritme, 2(1), 55–61.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.