Perbandingan Kinerja Algoritma Support Vector Machine dan Random Forest dalam Analisis Sentimen Ulasan Hotel di Kota Palembang pada Google Maps
DOI:
https://doi.org/10.55606/jutiti.v5i2.5802Keywords:
Classification Algorithm, Google Maps, Random Forest, Sentimen Analysis, Support VectorAbstract
The growth of the tourism sector in Palembang City has encouraged an increase in the need for quality hospitality services. In the digital age, user reviews on the Google Maps platform are an important source of data to assess customer satisfaction. This study aims to analyze and compare the effectiveness of two sentiment classification algorithms, namely Support Vector Machine (SVM) and Random Forest, in processing hotel reviews in Indonesian. A total of 1000 review data was used and processed through the stages of text cleanup, letter normalization, tokenization, stopword removal, and stemming. The evaluation was carried out with two approaches: 80:20 data sharing and cross-validation using the K-Fold technique. On data sharing, Random Forest showed 88% accuracy and 100% recall, while SVM recorded 87% accuracy and 99% recall, with equivalent precision and F1-score. However, cross-validation showed that the SVM was more stable and consistent, with 92% accuracy, 94% accuracy, 98% recall, and 96% F1-score, outpacing Random Forest's 91% accuracy and 95% F1-score. These results show that the SVM algorithm is superior in analyzing hotel review sentiment on Google Maps. These findings provide recommendations for tourism information system developers to adopt an SVM-based approach to review data processing to support more accurate and responsive decision-making.
Downloads
References
Andiana, M. J., Martanto, M., & Hayati, U. (2024). Analisis sentimen review hotel menggunakan metode Naïve Bayes pada hotel di wilayah Kota Cirebon. Jurnal Informatika dan Rekayasa Perangkat Lunak, 6(1), 258–264.
Asgård, T. (2021). Learning project management: The case of further education in Norway. Procedia Computer Science, 196, 848–855. https://doi.org/10.1016/j.procs.2021.12.084
Chandradev, V., Suarjaya, I. M. A. D., & Bayupati, I. P. A. (2023). Analisis sentimen review hotel menggunakan metode deep learning BERT. Jurnal Buana Informatika, 14(2), 107–116.
Das, M., & Alphonse, P. J. A. (2023). A comparative study on TF-IDF feature weighting method and its analysis using unstructured dataset. arXiv preprint arXiv:2308.04037.
Faradillah, F., Astuti, L. W., Anggraini, L. D., & Alie, M. F. (2022). Pelatihan penggunaan platform digital sebagai penerapan e-commerce pada kegiatan UMKM. Jurnal Abdimas Mandiri, 6(1), 53–59. https://doi.org/10.36982/jam.v6i1.2084
Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine learning method to predict the toddlers’ nutritional status. Jurnal Infotel, 16(1), 1–9. https://doi.org/10.20895/infotel.v15i4.988
Haddouchi, M., & Berrado, A. (2024). A survey and taxonomy of methods interpreting random forest models. arXiv preprint arXiv:2407.12759.
Hu, J., & Szymczak, S. (2023). A review on longitudinal data analysis with random forest. Briefings in Bioinformatics, 24(2), 1–11. https://doi.org/10.1093/bib/bbad002
Idris, I. S. K., Abdullah, A., & Rahman, R. (2023). Analisis sentimen terhadap penggunaan aplikasi Shopee menggunakan algoritma Support Vector Machine (SVM). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830
Jap, V., Suryana, A., Dewi, R., & Putra, B. (2023). Analisis kepuasan dan ketidakpuasan tamu Hotel Novotel: Pendekatan text mining atas ulasan daring pada situs web Tripadvisor. Jurnal Manajemen Perhotelan, 9(2), 71–80. https://doi.org/10.9744/jmp.9.2.71-80
Morama, H. C., Ratnawati, D. E., & Arwani, I. (2022). Analisis sentimen berbasis aspek terhadap ulasan Hotel Tentrem Yogyakarta menggunakan algoritma Random Forest classifier. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(4), 1702–1708.
Ndapamuri, A. M., Manongga, D., & Iriani, A. (2023). Analisis sentimen ulasan aplikasi Tripadvisor dengan metode Support Vector Machine, K-Nearest Neighbor, dan Naive Bayes. INOVTEK Polbeng—Seri Informatika, 8(1), 127–135. https://doi.org/10.35314/isi.v8i1.3260
Puspasari, S., & Dhamayanti, D. (2022). Sosialisasi eksistensi Museum Dr. A. K. Gani di pameran bersama museum se-Sumsel untuk peningkatan kunjungan eduwisata. Reswara: Jurnal Pengabdian Kepada Masyarakat, 3(2), 745–750. https://doi.org/10.46576/rjpkm.v3i2.1972
Puspasari, S., & Ermatita, E. (2021). A survey of data mining techniques for smart museum applications. JUITA: Jurnal Informatika, 9(1), 33–42.
Puspasari, S., Ermatita, & Zulkardi. (2022). Machine learning for exhibition recommendation in a museum’s virtual tour application. International Journal of Advanced Computer Science and Applications, 13(4), 404–412. https://doi.org/10.14569/IJACSA.2022.0130448
Rismayadi, A. A., Febrianto, R. W., Raharja, A. R., & Hariyanti, I. (2024). Perbandingan kinerja metode machine learning Support Vector Machine (SVM), Random Forest, dan K-Nearest Neighbors (KNN) dalam prediksi harga saham Apple. Media Informatika, 23(3), 152–160.
Sari, P. K., & Suryono, R. R. (2024). Komparasi algoritma Support Vector Machine dan Random Forest untuk analisis sentimen metaverse. Jurnal Mnemonic, 7(1), 31–39.
Solihin, S., & Suardani, M. (2021). Pengantar hotel dan restoran (pp. 1–109).
Suleri, J., & Ertuna, A. (2021). Exploring hotel identity by focusing on customer experience analysis. Research in Hospitality Management, 11(2), 113–120. https://doi.org/10.1080/22243534.2021.1917178
Surianto, D. F. (2025). Enhancing K-Means clustering for journal articles using TF-IDF and LDA feature extraction. Brilliance: Research of Artificial Intelligence, 4(2), 964–972. https://doi.org/10.47709/brilliance.v4i2.5547
Thomas, V. W. D., & Rumaisa, F. (2022). Analisis sentimen ulasan hotel bahasa Indonesia menggunakan Support Vector Machine dan TF-IDF. Jurnal Media Informatika Budidarma, 6(3), 1767–1775. https://doi.org/10.30865/mib.v6i3.4218
Utami, D. S., Hidayat, N., & Rakhmawati, N. A. (2022). Analisis sentimen ulasan terkait UNESCO Global Geopark di Google Maps dengan algoritma Naive Bayes. Jurnal Sains Komputer & Informatika (J-SAKTI), 6(2), 1154–1170. https://doi.org/10.30645/j-sakti.v6i2.538
Wahba, Y., Madhavji, N., & Steinbacher, J. (2022, September). A comparison of SVM against pre-trained language models (PLMs) for text classification tasks. In International Conference on Machine Learning, Optimization, and Data Science (pp. 304–313). Cham: Springer Nature Switzerland.
Wijaya, W., Permana, F. J., & Darwis, D. (2022). Penerapan metode Support Vector Machine untuk analisis sentimen pada ulasan pelanggan hotel di Tripadvisor. Jurnal Ilmu Komputer dan Sistem Informasi, 10(2), 40–48. https://doi.org/10.24912/jiksi.v10i2.22538
Zhan, Z. (2025). Comparative analysis of TF-IDF and Word2Vec in sentiment analysis: A case of food reviews. ITM Web of Conferences, 70, 02013. https://doi.org/10.1051/itmconf/20257002013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.