Pengaruh Tingkat Pencahayaan Pemotretan Urat Daun terhadap Tingkat Akurasi Pengenalan Jenis Bibit Mangga Menggunakan Metode Pengenalan JST-PB dan Fitur LBP

Authors

  • Suci Aulia Ramadhani Universitas Indo Global Mandiri
  • Gasim Gasim Universitas Indo Global Mandiri
  • Mustafa Ramadhan Universitas Indo Global Mandiri

DOI:

https://doi.org/10.55606/jutiti.v5i1.5854

Keywords:

Artificial Neural Network Backpropagation, Image Classification, Lighting, Local Binary Pattern, Mango Seedling

Abstract

Mango (Mangifera indica L.) is one of the most important tropical fruits with high nutritional value and significant economic potential. However, manual identification of mango seedlings remains less accurate due to the similarities in leaf shape and size among different varieties, which often leads to misclassification. This study aims to develop an automated system to recognize five types of mango seedlings—Harum Manis, Indramayu, Golek, Madu, and Gedong Gincu by utilizing leaf vein textures as the main distinguishing features. The methodology employed the Local Binary Pattern (LBP) technique for feature extraction and a Backpropagation Neural Network (BPNN) as the classification model. The dataset consisted of 250 training images and 125 testing images with a resolution of 100×100 pixels, captured under varying lighting conditions ranging from one to five lamps. The experimental results indicate that lighting conditions significantly affect classification accuracy. The highest accuracy was achieved under four-lamp lighting conditions, reaching 91.20%, followed by two lamps (89.60%), three lamps (87.20%), five lamps (76.80%), and one lamp (67.20%). Furthermore, a BPNN configuration with 12 hidden neurons consistently demonstrated reliable recognition performance. These findings suggest that the combination of LBP and BPNN is effective for automatic classification of mango seedlings. The implementation of this system has the potential to assist farmers and seedling institutions by improving efficiency, accuracy, and reliability in seedling identification, thereby supporting the advancement of technology-based agriculture.

Downloads

Download data is not yet available.

References

Anshori, F. B., Hendrawati, D., & Rahmasani, B. N. A. (2022). Analisis pencahayaan pada kenyamanan visual (Studi kasus: Perpustakaan Pusat, Universitas Islam Indonesia). Seminar Karya & Pameran Arsitektur Indonesia, 436–445. http://hdl.handle.net/123456789/43573

Ardiani, I., & Jannah, M. (2023). Hubungan kekerabatan fenetik pada mangga (Mangifera indica L.) di Kecamatan Tambun Utara, Kabupaten Bekasi. Sains dan Matematika, 8(1), 19–27. https://doi.org/10.26740/sainsmat.v8n1.p19-27

Asfiani, Samudi, S., & Madauna, I. S. (2019). Karakteristik mangga (Mangifera indica L.) lokal berdasarkan ciri morfologi dan anatomi. Agrotekbis, 7(5), 609–619.

Ayu Krisna Hadi, K. U., Suhartatik, N., & Widanti, Y. A. (2020). Fruit leather dari beberapa jenis mangga (Mangifera indica L.) dengan perbedaan konsentrasi gum. JITIPARI (Jurnal Ilmiah Teknologi dan Industri Pangan UNISRI), 5(2), 26–36. https://doi.org/10.33061/jitipari.v5i2.4069

Cynthia, E. P., & Ismanto, E. (2017). Memprediksi ketersediaan komoditi pangan Provinsi Riau. Jurnal Teknologi dan Sistem Informasi Univrab, 2(2), 196–209. https://doi.org/10.36341/rabit.v2i2.152

Fatimah, N. S., & Agustin, S. (2025). Klasifikasi citra batik menggunakan local binary pattern (LBP) dan support vector machine (SVM). Jurnal Algoritma, 22(1), 185–196. https://doi.org/10.33364/algoritma/v.22-1.2208

Febrianti, T., & Harahap, E. (2021). Penggunaan aplikasi MATLAB dalam pembelajaran program linear. Jurnal Matematika, 20(1), 1–7. https://doi.org/10.22202/jl.2020.v7i1.4411

Glcm, J. D. F. (2025). Perbandingan akurasi jarak potret untuk pengenalan jenis bibit mangga metode. Bina Teknologi, 7(3). https://doi.org/10.32877/bt.v7i3.2303

Jannah, M. Z. (2022). Analisis pencahayaan alami rumah tinggal menggunakan simulasi Dialux. Jurnal Lingkungan Binaan Indonesia, 11(3), 149–152. https://doi.org/10.32315/jlbi.v11i3.115

Juswadi, J., & Sumarna, P. (2021). Analisis trend dan perwilayahan komoditas mangga di Kabupaten Indramayu Jawa Barat. Paspalum: Jurnal Ilmiah Pertanian, 9(2), 157. https://doi.org/10.35138/paspalum.v9i2.308

Lorenza, S., Indo, U., & Mandiri, G. (2025). Identifikasi jenis bibit mangga dengan metode pengenalan JST-PB dan fitur GLCM. Jurnal Informatika, 8(1), 1–7.

Misran, M. (2017). Efisiensi penggunaan jumlah bibit terhadap pertumbuhan dan produksi padi sawah. Jurnal Penelitian Pertanian Terapan, 14(1), 39–43. https://doi.org/10.25181/jppt.v14i1.140

Muhimmah, I. (n.d.). Deteksi keriput pada citra wajah dengan teknik pengolahan citra.

Nadapdap, H. J., & Saefudin, B. R. (2020). Risiko usahatani mangga di Kecamatan Rembang Jawa Tengah. Jurnal Penelitian Pertanian Terapan, 20(2), 161–169. https://doi.org/10.25181/jppt.v20i2.1592

Novia, C., Utomo, D., Tinggi, S., Nurul, T., Probolinggo, J., & Pasuruan, U. Y. (2015). Diversifikasi mangga off grade menjadi selai dan dodol. Teknologi Pangan: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, 6(2), 1–4. https://doi.org/10.35891/tp.v6i2.471

Prabowo, D. A., & Abdullah, D. (2018). Deteksi dan perhitungan objek berdasarkan warna menggunakan color object tracking. Pseudocode, 5(2), 85–91. https://doi.org/10.33369/pseudocode.5.2.85-91

Rahayu, N. M. Y. D., Antara Kesiman, M. W., & Gunadi, I. G. A. (2021). Identifikasi jenis kayu berdasarkan fitur tekstur local binary pattern menggunakan metode learning vector quantization. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 10(3), 157. https://doi.org/10.23887/janapati.v10i3.40804

Ratna, S. (2020). Pengolahan citra digital dan histogram dengan Phyton dan text editor Phycharm. Technologia: Jurnal Ilmiah, 11(3), 181. https://doi.org/10.31602/tji.v11i3.3294

Ratnasari, E. K. (2016). Pengenalan jenis buah pada citra menggunakan pendekatan klasifikasi berdasarkan fitur warna Lab dan tekstur co-occurrence. Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, 1(2), 88–97. https://doi.org/10.25139/inform.v1i2.846

Retnoningrum, D., Widodo, A. W., & Rahman, M. A. (2019). Ekstraksi ciri pada telapak tangan dengan metode local binary pattern (LBP). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(3), 2611–2618. http://j-ptiik.ub.ac.id

Sari, C. A., & Rachmawanto, E. H. (2021). Fitur ekstraksi LBP dan naive Bayes dalam klasifikasi jenis pepaya berdasarkan citra daun. Jurnal Masyarakat Informatika, 12(2), 102–113. https://doi.org/10.14710/jmasif.12.2.42222

Suahati, A. F., Nurrahman, A. A., & Rukmana, O. (2022). Penggunaan jaringan syaraf tiruan – backpropagation dalam memprediksi jumlah mahasiswa baru. Jurnal Media Teknik dan Sistem Industri, 6(1), 21. https://doi.org/10.35194/jmtsi.v6i1.1589

Trembesi, K. B., Di, D. A. N. S., & Nufus, M. (2024). Persemaian permanen BPDAS Solo: Seedlings quality of rain tree, balsa, and soursop in the BPDAS permanent nursery, Solo. Jurnal Sumberdaya Lahan Tropika, 15(3), 210–215. https://doi.org/10.29244/j-siltrop.15.03.210-215

Wardhani, I. P., Putri, A. M., Widayati, S., & Tim Informatika ITI. (2021). Algoritma identifikasi ciri citra pegunungan dengan metode cropping. Jurnal Ilmiah Komputasi, 20(2), 283–289. https://doi.org/10.32409/jikstik.20.2.2763

Yuhandri. (2019). Perbandingan metode cropping pada sebuah citra untuk pengambilan motif tertentu pada kain songket Sumatera Barat. Jurnal KomtekInfo, 6(1), 97–107. https://doi.org/10.35134/komtekinfo.v6i1.45

Downloads

Published

2025-04-30

How to Cite

Ramadhani, S. A., Gasim Gasim, & Mustafa Ramadhan. (2025). Pengaruh Tingkat Pencahayaan Pemotretan Urat Daun terhadap Tingkat Akurasi Pengenalan Jenis Bibit Mangga Menggunakan Metode Pengenalan JST-PB dan Fitur LBP. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(1), 505–524. https://doi.org/10.55606/jutiti.v5i1.5854

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.