Implementasi Metode Learning Vector Quantization (LVQ) untuk Klasifikasi Jumlah Penduduk Menurut Jenis Kelamin dan Kabupaten di Sumatera Utara

Authors

  • Nur Saida Universitas Asahan
  • Muhammad Yasin Universitas Asahan

DOI:

https://doi.org/10.55606/jutiti.v5i3.6083

Keywords:

District, Gender, Learning Vector Quantization, North Sumatra, Population Classification

Abstract

North Sumatra Province has a large population and is spread across various districts, so an effective system is needed to manage and analyze population data. This research aims to implement the Learning Vector Quantization (LVQ) method in classifying population based on gender and district in North Sumatra. The LVQ method was chosen because of its ability to perform classification based on supervised learning that utilizes vector prototypes. The data used is sourced from the Central Bureau of Statistics (BPS) of North Sumatra in 2022 and analyzed using customized parameters in RapidMiner software. This research involves several stages, starting from data collection, UML-based system design, variable selection, to the application and testing of classification models. The results showed that the LVQ method was able to classify the population based on gender and district accurately and efficiently. It is expected that this classification system can be the basis for decision-making in regional development planning and accelerate government programs related to population distribution.

Downloads

Download data is not yet available.

References

Br Sitepu, N. L. (2021). Jaringan saraf tiruan memprediksi nilai pembelajaran siswa dengan metode backpropagation (Studi kasus: SMP Negeri 1 Salapian). Journal of Information and Technology, 1(2), 54–58. https://doi.org/10.32938/jitu.v1i2.1006

Gusman, A. P. (2019). Analisa perancangan dan implementasi pemesanan secara online berbasis customer relationship management (CRM). Majalah Ilmiah UPI YPTK, 26(1), 7–13. https://doi.org/10.35134/jmi.v26i1.17

Harahap, M., Mutia, A., Simatupang, D. B. M., Gurning, B. S., & Putri, A. U. (2021). Implementasi algoritma Learning Vector Quantization (LVQ) pada prediksi produksi tandan buah segar pada perkebunan kelapa sawit. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), 20(2), 124–131. https://doi.org/10.53513/jis.v20i2.3757

Irvan, M. (2017). Implementasi jaringan syaraf tiruan (JST) backpropagation neural network untuk prediksi penentuan jurusan calon mahasiswa (Studi kasus: UIN Suska Riau). [Skripsi].

Kaban, R., & Sembiring, D. J. M. (2021). HTML (Hypertext Markup Language): Pengantar pemrograman berbasis web. Sumatera Barat: Insan Cendekia Mandiri.

Kadir, A. (2019). Tuntunan praktis belajar database menggunakan MySQL. Yogyakarta: ANDI Offset.

Kalua, A. L., Mantiri, R., Rumondor, C., & Mogogibung, E. (2024). Sistem informasi pendaftaran beasiswa dan jadwal legalisir berbasis website responsif (Studi kasus: Dinas Pendidikan Sulawesi Utara). Journal of Information Technology, Software Engineering and Computer Science, 2(2), 58–74. https://doi.org/10.58602/itsecs.v2i2.108

Kristianto, Y., Indra, Z., & Sari, I. P. (2021). Smart notepad menggunakan security berbasis Android. Jurnal SANTI – Sistem Informasi dan Teknik Informasi, 1(1), 68–84. https://doi.org/10.58794/santi.v1i1.14

Mahardika, F., Merani, S. G., & Suseno, A. T. (2023). Penerapan metode extreme programming pada perancangan UML sistem informasi penggajian karyawan. Blend Sains: Jurnal Teknik, 2(3), 204–217. https://doi.org/10.56211/blendsains.v2i3.313

Mardiana, Y., & Kalsum, T. U. (2021). Implementation of artificial neural networks with Learning Vector Quantization (LVQ) algorithm for detecting fingerprint characteristics. Jurnal Komputer, Informasi dan Teknologi, 1(2), 444–450. https://doi.org/10.53697/jkomitek.v1i2.432

Novita Sari, R., Negoro, W. S., & Universitas Potensi Utama. (2024). Jaringan syaraf tiruan dengan Learning Vector Quantization (LVQ) untuk klasifikasi daun. Rekayasa Perangkat Lunak, 16(1), 25–34.

Nugroho, A., Suprihadi, U., & Jaenul, A. (2021). Rancang bangun aplikasi toko online berbasis web CodeIgniter 3 untuk usaha mikro dan UMKM. Tangerang: Media Sains Indonesia.

Pamungkas, C. A. (2017). Dasar pemrograman web dengan PHP. Yogyakarta: Deepublish.

Pranoto, S., Sutiono, S., Sarifudin, & Nasution, D. (2024). Penerapan UML dalam perancangan sistem informasi pelaporan dan evaluasi pembangunan pada Bagian Administrasi Pembangunan Sekretariat Daerah Kota Tebing Tinggi. Surplus: Jurnal Ekonomi dan Bisnis, 2(2), 384–401. https://qjurnal.my.id/index.php/sur/article/view/866

Ramadhani, R., & Siagian, P. (2021). Proyeksi dampak pertumbuhan penduduk Provinsi Sumatera Utara, Jepang, dan Belanda di tahun 2035: Analisis geometri dan eksponensial. Jurnal Ilmiah, 6(1), 38–48.

Sa’ad, M. I. (2020). Otodidak web programming: Membuat website edutainment. Jakarta: PT Alex Media Komputindo.

Saputro, H., & Mahendra, D. (2019). Penerapan aplikasi penjualan online berbasis customer relationship management (CRM) pada Toko Sumber Mulyo di Kabupaten Kudus. Jurnal Disprotek, 10(1), 35–42. https://doi.org/10.34001/jdpt.v10i1.869

Setyowati, E., & Mariani, S. (2021). Penerapan jaringan syaraf tiruan dengan metode Learning Vector Quantization (LVQ) untuk klasifikasi penyakit infeksi saluran pernapasan akut (ISPA). PRISMA: Prosiding Seminar Nasional Matematika, 4, 514–523. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/44356

Tomasouw, B. P., Aulele, S. N., & Rijoly, M. E. (2021). Penerapan metode Learning Vector Quantization (LVQ) untuk mendeteksi penyalahgunaan narkoba. Contemporary Mathematics and Applications (ConMathA), 3(1), 36–42. https://doi.org/10.20473/conmatha.v3i1.26940.

Downloads

Published

2025-10-23

How to Cite

Nur Saida, & Muhammad Yasin. (2025). Implementasi Metode Learning Vector Quantization (LVQ) untuk Klasifikasi Jumlah Penduduk Menurut Jenis Kelamin dan Kabupaten di Sumatera Utara. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 29–43. https://doi.org/10.55606/jutiti.v5i3.6083

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.