Analisis Pola Pergerakan dan Prediksi Harga Emas Menggunakan Regresi Linear serta Model Time Series ARIMA dan VAR
DOI:
https://doi.org/10.55606/jutiti.v5i3.6233Keywords:
ARIMA, Gold Price Prediction, Linear Regression, Time Series, VARAbstract
Gold is one of the most popular investment instruments due to its stable value and ability to protect assets against inflation. However, its price tends to fluctuate significantly, influenced by macroeconomic factors such as exchange rates, interest rates, and global geopolitical conditions. This study aims to analyze the movement patterns and predict gold prices based on historical data from 2019 to 2024 using the Linear Regression method and Time Series models, namely ARIMA and VAR. The analysis process was carried out using Orange Data Mining software, which enables the application of machine learning algorithms through a visual and interactive interface without manual coding. The dataset used consists of daily gold closing prices, processed and tested to evaluate model accuracy using Root Mean Square Error (RMSE) and Correlation Coefficient (R) indicators. The results indicate that the Linear Regression model effectively captures the general trend of gold prices, while ARIMA and VAR models produce more accurate forecasts based on historical fluctuations. The integration of regression and time series approaches improves prediction reliability. Overall, this research contributes to the development of financial data analysis and provides insights for investors in making more informed and data-driven investment decisions.
Downloads
References
Arinal, V., Azhari, M., & Pendahuluan, I. (2023). Penerapan regresi linear untuk prediksi harga beras di Indonesia. 5(1), 341–346.
Cahya, T. D., & Chaidir, I. (2025). Prediksi harga emas di Indonesia menggunakan metode linear regression berbasis data historis Antam. 5, 10391–10400.
Dampak, A., Emas, H., Dunia, H. M., Bi, D. A. N., Terhadap, R., & Index, I. (2019). Journal of Enterprise and Development, 1(2).
Egistin, D. P., Rauza, M. Y., Ramadhan, R. H., Ramadani, S., & Kunci, K. (2025). Analisis regresi linier sederhana dan penerapannya. 1(2), 69–78.
Ekonomi, K., & Sriwulan, J. (2020). Analisis hubungan harga emas, harga saham, nilai tukar, dan suku bunga di Indonesia: Pendekatan vector error correction model (VECM). 2(September), 1–10.
Gold, I., Forecasting, P., Arima, U., Sari, H. R., Wahyuningsih, S., & Siringoringo, M. (2024). Peramalan harga emas Indonesia menggunakan model. 15(2017), 1–10. https://doi.org/10.30872/eksponensial.v15i1.1265
Hafiz, M., Anisa, Y., Gani, A., & Malik, M. (2025). Pemodelan keterkaitan harga emas dunia dan saham Antam menggunakan vector auto regression. 10(June), 56–63.
Handayani, S., Nugroho, B. I., Unggul, E., & Utami, S. (2026). Perbandingan metode regresi linier dan exponential smoothing dalam memprediksi harga minyak goreng kemasan di Indonesia. 4(3), 1530–1538.
Jaya, I. D. (2019). Penerapan metode trend least square untuk forecasting (prediksi) penjualan obat pada apotek. 5(1), 1–7.
Jurnal, H., & Teknologi, F. (n.d.). Penerapan orange data mining untuk pembelajaran sistem gambar hewan berbasis machine learning.
Kusumawati, Y., & Widyatmoko, K. (2022). Gold price prediction using support vector regression. 7(1), 89–102.
Levi, S., N, V. K., Shalini, R., Dharmendra, P., & Jadav, R. (2025). Forecasting the price of gold using the ARIMA model: An alternate investment strategy. 11(8).
Matematika, F., Alam, P., & Riau, U. (2024). Analisis vector autoregressive (VAR) pada jumlah wisatawan dan produk domestik regional bruto (PDRB). 34–41.
Nasional, S., Elektro, T., Informasi, S., Informatika, T., Aldero, E. B., & Hapsari, D. P. (2025). Implementasi algoritma pengklasifikasi long short-term memory (LSTM) untuk data time series. 653–666.
Pada, P., Mikro, U., Menengah, D. A. N., Hamdanah, F. H., & Fitrianah, D. (2021). Analisis performansi algoritma linear regression dengan generalized linear model untuk prediksi. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 24(10), 23–32.
Putri, A. R., Santoso, N. A., & Santoso, B. A. (2025). Implementasi algoritma regresi linier dan ARIMA untuk prediksi harga emas. 4(3), 5194–5200.
Rizal, M. N., & Analytics, I. D. (2024). No Title. 10(21), 114–126.
Santoso, C. (2023). Implementasi orange data mining untuk prediksi biaya asuransi. Aisyah Journal of Informatics and Electrical Engineering (A.J.I.E.E), 5(1), 112–119. https://doi.org/10.30604/jti.v5i1.180
Setyowibowo, S., As, M., & Farida, E. (2022). Forecasting of daily gold price using ARIMA-GARCH hybrid model. 19(December 2021), 257–270. https://doi.org/10.29259/jep.v19i2.13903
Zifi, M. P., & Arfan, T. (2021). Pengaruh harga emas terhadap indeks harga saham gabungan dengan inflasi sebagai variabel moderating. 4(2), 196–203.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




