Penerapan Algoritma K-Means untuk Pengelompokan Kerentanan Wilayah terhadap Kasus DBD di Kota Bandung

Authors

  • Zahwa Asfa Rabbani Universitas Bina Sarana Informatika
  • Alya Avisa Universitas Bina Sarana Informatika
  • Paulus Paulus Universitas Bina Sarana Informatika
  • Sumanto Sumanto Universitas Bina Sarana Informatika
  • Imam Budiawan Universitas Bina Sarana Informatika
  • Roida Pakpahan Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6239

Keywords:

K-Means, Data Mining, Dengue Fever, Clustering, Health

Abstract

Dengue Hemorrhagic Fever (DHF) is an infectious disease caused by the dengue virus and transmitted through bites of the Aedes aegypti mosquito. This illness remains a major public health concern in Indonesia, particularly in urban regions like Bandung City, where population density and environmental variations contribute to disease transmission. The purpose of this study is to apply the K-Means Clustering algorithm to group areas based on their level of vulnerability to DHF spread in Bandung City. The dataset, obtained from the Bandung Open Data portal covering the 2016–2024 period, was processed using the Orange Data Mining application. The analysis began with data preprocessing, which included cleaning, attribute selection, and normalization to ensure optimal clustering performance. The data were then grouped into three primary clusters representing high, medium, and low risk zones. The findings indicate that the K-Means algorithm effectively detects the spatial and temporal distribution of DHF cases and presents it through scatter plot visualizations that illustrate yearly patterns. High-risk regions are typically characterized by dense population, poor sanitation, and limited environmental management. These findings provide essential insight for local health authorities to design more targeted prevention and control strategies. Furthermore, this research can serve as a foundation for developing a decision support system that aids in monitoring, evaluating prevention efforts, and optimizing health resource allocation to reduce the incidence of DHF in the future.

Downloads

Download data is not yet available.

References

Arisanti, M., & Suryaningtyas, N. H. (2021). Kejadian demam berdarah dengue (DBD) di Indonesia tahun 2010–2019. Spirakel, 13(1), 34–41. https://doi.org/10.22435/spirakel.v13i1.5439

Ayuningtyas, A. (2023). Analisis hubungan kepadatan penduduk dengan kejadian demam berdarah dengue (DBD) di Provinsi Jawa Barat. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 13(2), 419–426. https://doi.org/10.32583/pskm.v13i2.772

CNN Indonesia. (2024). 3 besar daerah kasus DBD di RI saat ini: Bandung, Tangerang, dan Bogor. Retrieved November 1, 2025, from https://www.cnnindonesia.com/nasional/20240503115959-20-1093483/3-besar-daerah-kasus-dbd-di-ri-saat-ini-bandung-tangerang-dan-bogor

Dinas Kesehatan Kota Bandung. (2025). Jumlah kasus demam berdarah dengue (DBD) menurut puskesmas di Kota Bandung. Retrieved from https://opendata.bandung.go.id/dataset/jumlah-kasus-demam-berdarah-dengue-dbd-menurut-puskesmas-di-kota-bandung

Fauzan, A., Suarna, N., Ali, I., & Susana, H. (2025). Penerapan algoritma K-means clustering untuk meningkatkan model pengelompokan dan kinerja jaringan Wi-Fi secara optimal. Jurnal Informatika dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6272

Ismah, Z., Purnama, T. B., Wulandari, D. R., Sazkiah, E. R., & Ashar, Y. K. (2021). Faktor risiko demam berdarah di negara tropis. ASPIRATOR – Journal of Vector-Borne Disease Studies, 13(2), 147–158. https://doi.org/10.22435/asp.v13i2.4629

Kementerian Kesehatan Republik Indonesia. (2021). Data DBD Indonesia tahun 2021. Jakarta.

Kementerian Kesehatan Republik Indonesia. (2025). Demam berdarah dengue. Retrieved November 4, 2025, from https://ayosehat.kemkes.go.id/topik/demam-berdarah-dengue

Khusaeri, A. (2024). Analisis algoritma K-means clustering dalam pengelompokan daerah penyebaran penyakit demam berdarah dengue. Journal of Information System, Informatics and Computing, 8(2), 434. https://doi.org/10.52362/jisicom.v8i2.1795

Miftahurrahmi, M. (2024). Pengetahuan dan sikap masyarakat serta peran petugas kesehatan terkait pencegahan demam berdarah dengue (DBD) di Desa Pulau Payung. SEHAT: Jurnal Kesehatan Terpadu, 3(1), 223–227. https://doi.org/10.31004/sjkt.v3i1.25347

Nugraha, A., Nurdiawan, O., & Dwilestari, G. (2022). Penerapan data mining metode K-means clustering untuk analisa penjualan pada Toko Yana Sport. Jurnal Mahasiswa Teknik Informatika, 6.

Nur Afidah, N. (2023). Penerapan metode clustering dengan algoritma K-means untuk pengelompokkan data migrasi penduduk tiap kecamatan di Kabupaten Rembang. PRISMA, Prosiding Seminar Nasional Matematika, 6, 729–738. Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/

Nuranisa, R., Maryanto, Y. B., & Isfandiari, M. A. (2022). Correlation of free larvae index and population density with dengue fever incidence rate. Indonesian Journal of Public Health, 17(3), 477–487. https://doi.org/10.20473/ijph.v17i3.2022.477-487

Nyoman, I., & Adiputra, M. (2021). Clustering penyakit DBD pada Rumah Sakit Dharma Kerti menggunakan algoritma K-means. INSERT: Information System and Emerging Technology Journal, 2(2), 99.

Sembiring, E. M. (2022). Penerapan K-means clustering untuk pengelompokan penyebaran demam berdarah dengue (DBD) di Kabupaten Deli Serdang. TIN: Terapan Informatika Nusantara, 2(11), 673–677. https://doi.org/10.47065/tin.v2i11.1503

Sidharta, A. A., Diniarti, F., & Darmawansyah, D. (2023). Analisis spasial faktor risiko kejadian demam berdarah dengue di Kota Bengkulu. Jurnal Vokasi Kesehatan, 2(2), 43–56. https://doi.org/10.58222/juvokes.v2i2.162

Sutriyawan, A., Martini, M., Sutiningsih, D., Akbar, H., Agushybana, F., Wahyuningsih, N. E., … Victor Eneojo, A. (2025). Spatial analysis of dengue incidence and linear effects with climate conditions in Bandung City Indonesia in 2021–2023. Journal of Public Health and Development, 23(1), 244–258. https://doi.org/10.55131/jphd/2025/230119

Tyas, T. M. M., & Purnamasari, A. I. (2023). Penerapan algoritma K-means dalam mengelompokkan demam berdarah dengue berdasarkan kabupaten. Blend Sains Jurnal Teknik, 1(4), 277–283. https://doi.org/10.56211/blendsains.v1i4.231

Yuliawan, K. (2025). Metode K-means clustering untuk mengelompokkan indeks pembangunan manusia (IPM) Provinsi Papua. Jurnal Mahasiswa Teknik Informatika, 9.

Yunus, R., Supiati, S., & Nurtimasiah, W. O. (2024). Edukasi pencegahan penyakit demam berdarah dengue dan optimalisasi pemanfaatan tanaman berpotensi penolak vektor penular DBD. Jurnal Inovasi, Pemberdayaan dan Pengabdian Masyarakat, 4(2), 45–53. https://doi.org/10.36990/jippm.v4i2.1535

Downloads

Published

2025-11-26

How to Cite

Zahwa Asfa Rabbani, Alya Avisa, Paulus Paulus, Sumanto Sumanto, Imam Budiawan, & Roida Pakpahan. (2025). Penerapan Algoritma K-Means untuk Pengelompokan Kerentanan Wilayah terhadap Kasus DBD di Kota Bandung. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 175–186. https://doi.org/10.55606/jutiti.v5i3.6239

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)