Penerapan Metode Logistic Regression untuk Memprediksi Potensi Penyakit Liver pada Pasien

Authors

  • Tarmidzi Ibrahim Universitas Bina Sarana Informatika
  • Imam Wahyudi Universitas Bina Sarana Informatika
  • Vemi Januar Pratama Universitas Bina Sarana Informatika
  • Sumanto Sumanto Universitas Bina Sarana Informatika
  • Imam Budiawan Universitas Bina Sarana Informatika
  • Roida Pakpahan Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6284

Keywords:

Data Mining, Early Detection, Liver Disease, Logistic Regression, Predictive Model

Abstract

Liver disease is a major global health concern that often goes undiagnosed in its early stages due to the absence of specific symptoms. Implementing data-driven approaches for early detection can significantly enhance diagnostic accuracy and improve clinical outcomes. This study aims to develop a predictive model using the Logistic Regression algorithm to identify individuals at high risk of liver disease. The data analysis process was conducted visually through data mining software, encompassing several stages such as data loading, feature selection, exploratory data analysis, and model evaluation. The dataset includes various clinical and laboratory attributes of patients, such as blood test results, liver function indicators, and demographic factors. The model’s performance was assessed using multiple evaluation metrics, with a focus on Classification Accuracy (CA) and the Area Under the ROC Curve (AUC) to measure predictive precision and classification ability. The results show that the Logistic Regression model achieved an accuracy of 71.8% and an AUC score of 0.746. These findings indicate that the model demonstrates good predictive performance and effectively identifies early-stage liver disease cases. However, further optimization is necessary to improve overall model efficiency and ensure more robust predictive capabilities in clinical applications.

Downloads

Download data is not yet available.

References

Alim, M. J. R., Rahman, T., & Islam, M. K. (2021). Early prediction of liver disease using machine learning models. International Journal of Computer Applications, 183(24), 1–6.

Bendi, V., & Rao, J. V. (2020). A comparative study on liver patient diagnosis using machine learning algorithms. International Journal of Engineering Research and Technology (IJERT), 9(5), 321–325.

Bhattacharjee, S., & Das, A. (2024). Hybrid ML approaches for healthcare data analysis. IEEE Transactions on Computational Biology and Bioinformatics, 21(2), 789–798.

Chen, Y., Zhang, X., & Wang, L. (2021). Enhanced clinical prediction using interpretable machine learning. IEEE Access, 9, 14567–14575.

Dua, D., & Graff, C. (2019). UCI Machine Learning Repository: Indian Liver Patient Dataset (ILPD). University of California, Irvine, School of Information and Computer Sciences. https://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)

Haryadi, D., Atmaja, D. M. U., & Hakim, A. R. (2023). Prediction of liver disease using a linear regression algorithm. Journal of Informatics and Communication Technology (JICT), 5(1), 89–100. https://doi.org/10.52661/j_ict.v5i1.182

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781118548387

Kumar, S., & Gupta, N. (2022). Comparative performance of ML algorithms for early detection of liver disorders. Expert Systems with Applications, 210, 118468. https://doi.org/10.1016/j.eswa.2022.118468

Modhugu, V. R., & Ponnusamy, S. (2024). Comparative analysis of machine learning algorithms for liver disease prediction: SVM, logistic regression, and decision tree. Asian Journal of Research in Computer Science, 17(6), 188–201. https://doi.org/10.9734/ajrcos/2024/v17i6467

Mostafa, F., Hasan, E., Williamson, M., & Khan, H. (2021). Statistical machine learning approaches to liver disease prediction. Livers, 1(4), 294–312. https://doi.org/10.3390/livers1040023

Osaseri, R. O., & Usiobaifo, A. R. (2024). Predicting liver disease using support vector machine and logistic regression classification algorithm. NIPES Journal of Science and Technology Research, 6(4). https://doi.org/10.5281/zenodo.14302631

Prakash, A., & Sinha, R. (2021). Analyzing imbalanced datasets in medical diagnosis using SMOTE. Procedia Computer Science, 192, 450–457. https://doi.org/10.1016/j.procs.2021.08.047

Rahman, M., Akter, F., & Ahmed, K. (2023). Feature selection-based prediction of liver diseases using logistic regression. Healthcare Analytics, 3, 100113.

Saini, P., Kaur, A., & Sharma, R. (2021). Improving liver disease prediction using SMOTE and ensemble models. Journal of Medical Systems, 45(8), 1–10.

Zhu, G., Song, Y., Lu, Z., et al. (2025). Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics. Journal of Translational Medicine, 23, 381. https://doi.org/10.1186/s12967-025-06387-5

Downloads

Published

2025-11-26

How to Cite

Tarmidzi Ibrahim, Imam Wahyudi, Vemi Januar Pratama, Sumanto Sumanto, Imam Budiawan, & Roida Pakpahan. (2025). Penerapan Metode Logistic Regression untuk Memprediksi Potensi Penyakit Liver pada Pasien. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 236–246. https://doi.org/10.55606/jutiti.v5i3.6284

Similar Articles

<< < 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)