Sistem Deteksi Penggunaan Helm Pada Pengendara Sepeda Motor di Indonesia Menggunakan Perbandingan Model YOLOv8 dan RT-DETR

Authors

  • Samuel Orief Rosario Universitas Bina Sarana Informatika
  • Agustinus Aditya Bintara Universitas Bina Sarana Informatika
  • Muhammad Rifki Zhaki Universitas Bina Sarana Informatika
  • Rachmat Adi Purnama Universitas Bina Sarana Informatika
  • Rame Santoso Universitas Bina Sarana Informatika
  • Veti Apriana Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6314

Keywords:

Deep Learning, Helmet Detection, RT-DETR, Traffic Safety, YOLOv8

Abstract

Road safety is an important aspect in reducing accident risks, especially for motorcycle riders. To improve compliance with helmet use, this study compares the performance of two deep learning–based object detection models, namely YOLOv8 and RT-DETR, using a Roboflow dataset consisting of 3,735 images with two classes: with helmet and without helmet. The research process includes data acquisition, preprocessing (512×512 pixels), model training conducted in Visual Studio Code using an Nvidia GTX 1070 Ti GPU with the Ultralytics framework (100 epochs, AdamW optimizer, 0.0005 learning rate, 25 patience), testing on images, videos, and real-time inputs using last.pt, as well as evaluation through precision, recall, mAP, and confusion matrix, followed by implementation of the best algorithm in a local Streamlit web application.The results show that RT-DETR achieved slightly better training performance in terms of mAP50–95, while YOLOv8 performed better during real-world testing with more stable accuracy, particularly for the with helmet class. YOLOv8 reached up to 100% accuracy in video and real-time testing, whereas RT-DETR performed better in the without helmet class, achieving 95% accuracy on image data and up to 100% in video testing. Overall, YOLOv8 was selected as the best model for implementation in the Streamlit-based helmet detection application because it is faster, more stable, and more accurate. This system has the potential to support intelligent ETLE enforcement to enhance traffic safety in Indonesia.

Downloads

Download data is not yet available.

References

Anggana, M. W., Faizon, A., Munip, A., & Ahyana, A. A. (2025). Deteksi penggunaan helm pada pengendara sepeda motor menggunakan model YOLOv8 dan Streamlit. Jurnal KTI, 3(2), 3–6. https://doi.org/10.26714/jkti.v3i2.18676

Aningtiyas, P. R., Sumin, A., & Wirawan, S. (2020). Pembuatan aplikasi deteksi objek menggunakan TensorFlow Object Detection API dengan memanfaatkan SSD MobileNet V2 sebagai model pra-terlatih. Jurnal Teknologi Informasi, 19, 421–430.

Ariya, C., & Lina. (2023). Perancangan deteksi objek pada rak toko menggunakan metode Mask R-CNN. Jurnal Teknologi, 8(2), 295–299.

Arya, K. M., Ajith, K. K., & Engineering, C. (2021). A review on deep learning based helmet detection.

Astra Daihatsu. (2025). 100 lebih lokasi kamera ETLE di Jakarta: Daftar lengkap dan terbaru tahun 2025. Diakses 9 November 2025, dari https://www.astra-daihatsu.id/berita-dan-tips/100-lebih-lokasi-kamera-etle-di-jakarta-daftar-lengkap-dan-terbaru-tahun-2025

Baihaqi, K. A., Cahyana, Y., & Buana, U. (2021). Application of convolution neural network algorithm for rice type detection using YOLO v3. Jurnal Informatika, 3(2), 272–280.

Berman, S. (2025). Implementasi pengaturan penggunaan helm bagi pengendara sepeda motor di wilayah Polres Nias Selatan (Studi di Satlantas Polres Nias Selatan). Jurnal Hukum, 4(1), 105–118.

Damayanti, A., Aisyah, A., Riska, Ani, N., & Anna, D. M. (2024). Menilik potensi artificial intelligence bagi masa depan pendidikan global. Jurnal Pendidikan, 5(2), 81–91.

Daqiqil, I. (2021). Machine learning: Teori, studi kasus dan implementasi menggunakan Python. Badan Penerbit Universitas Riau.

Fatkhin, N., & Fadjeri, A. (2024). Pembelajaran mesin untuk deteksi helm keselamatan menggunakan algoritma YOLOv8. Jurnal Informatika, 2, 77–86.

Hidayat, F. T., & Whardana, A. K. (2024). Deteksi pelanggaran sepeda motor menggunakan algoritma YOLO dan mean average precision. Jurnal Teknologi, VIII, 71–79.

Ilham, I. R., & Utaminingrum, F. (2021). Deteksi helm untuk keamanan pengendara sepeda motor dengan metode CNN (Convolutional Neural Network) menggunakan Raspberry Pi. Jurnal Teknologi Informasi, 5(11), 4734–4739.

Iman, R. M., Rahmadewi, R., & tim lainnya. (2025). Detection of safety helmet usage on workers using You Only Look Once version 8 (YOLOv8). Jurnal Teknologi, 27(1), 11–18.

Intel. (2025). Apa itu computer vision? Diakses 9 November 2025, dari https://www.intel.co.id/content/www/id/id/learn/what-is-computer-vision.html

Khoiriyah, R. (2023). Implementasi algoritma Detection Transformer (DETR) dalam mendeteksi kendaraan di jalan raya. Diakses dari https://eskripsi.usm.ac.id/files/skripsi/

Muazam, S., Kurniawan, Y. I., & Iskandar, D. (2024). Web-based image captioning for images of tourist attractions in Purbalingga using transformer architecture and text-to-speech. Jurnal Teknologi, 5(4), 1460–1478.

Polgan, J. M., Reswara, H. A., Priyatna, B., Hananto, A., & tim lainnya. (2025). Implementasi deteksi objek penggunaan helm dengan metode YOLOv10. Jurnal Informatika, 14, 1380–1387.

Purnama, A., Indra, J., Arum, S., Lestari, P., & Faisal, S. (2025). Deteksi pelanggaran penggunaan helm dengan metode SSD dan arsitektur MobileNetV2. Jurnal Teknologi, 7(1).

Ramadhanu, A., & Syahputra, H. (2022). Pengenalan teknologi pengolahan citra digital (Digital Image Processing) untuk santri di Rahmatan Lil ‘Alamin International Islamic Boarding School. Jurnal Pengabdian, 3(2), 1239–1244.

Tjitrahardja, E., Hanif, I. A., Naufal, R. B., & Rahadianti, L. (2024). Deteksi penggunaan helm pada pengendara motor di Indonesia menggunakan Deformable DETR. Jurnal Informatika, 2, 41–46.

Downloads

Published

2025-12-05

How to Cite

Samuel Orief Rosario, Agustinus Aditya Bintara, Muhammad Rifki Zhaki, Rachmat Adi Purnama, Rame Santoso, & Veti Apriana. (2025). Sistem Deteksi Penggunaan Helm Pada Pengendara Sepeda Motor di Indonesia Menggunakan Perbandingan Model YOLOv8 dan RT-DETR. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 321–338. https://doi.org/10.55606/jutiti.v5i3.6314

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.