Perancangan Model Support Vector Machines Berbasis Geospasial Sebagai System Peringatan Dini Penyebaran DBD Di Kabupaten Sikka

Authors

  • Febriyanti Alwisye Wara Universitas Nusa Nipa
  • Gerfasius Take Piran Universitas Nusa Nipa
  • Yohanes B.M. Darkel Universitas Nusa Nipa

DOI:

https://doi.org/10.55606/jutiti.v5i3.6413

Keywords:

Support Vector Machines; Geospatial; system remember early; mobile application; dengue fever

Abstract

Dengue hemorrhagic fever (DHF) is a disease that is commonly found in most tropical and subtropical regions, especially Southeast Asia, including Indonesia, one of which is Sikka Regency, NTT Province. In 2024, there were 821 cases of DHF recorded and at the beginning of the year until February 2025 there were 50 cases of DHF. To overcome the spread of this disease, an early warning system is needed that is able to identify its distribution patterns quickly and accurately. The purpose of this study is to build a mobile application as an early warning system with a Support Vector Machines (SVM) algorithm model based on geospatial data to inform the public and authorities about the potential for a DHF outbreak in Sikka Regency, so that preventive measures can be taken immediately. The SVM model was chosen because of its ability to classify data and is known as one of the classification methods that has high results in predicting potential classifications in data. The geospatial data used includes rainfall, temperature, and humidity data, population density, and the history of DHF cases in Sikka Regency. The results show that the SVM-based approach can improve prediction accuracy compared to conventional methods and provide an innovative solution for dengue fever mitigation through the use of geospatial-based technology.

Downloads

Download data is not yet available.

References

Banu, S., Hu, W., Hurst, C., & Tong, S. (2011). Dengue transmission in the Asia-Pacific region: Impact of climate change and socio-environmental factors. Tropical Medicine & International Health, 16(5), 598–607. https://doi.org/10.1111/j.1365-3156.2011.02734.x

Daswito, R., Samosir, K., Ningsih, T. A., & Fikri, M. (2023). Pengembangan aplikasi Android CIBERNATIK 2.0 untuk mendukung pengendalian demam berdarah dengue berbasis pemberdayaan dan teknologi informasi. Jurnal Kesehatan Terpadu, 15(1), 17–23.

Devos, O., Ruckebusch, C., Durand, A., Duponchel, L., & Huvenne, J. P. (2009). Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometrics and Intelligent Laboratory Systems, 96(1), 27–33. https://doi.org/10.1016/j.chemolab.2008.11.005

Ebi, K. L., Nealon, J., & Boyer, C. (2018). Dengue in a changing climate. Environmental Research, 165, 115–123. https://doi.org/10.1016/j.envres.2018.03.022

He, B., Shi, Y., Wan, Q., & Zhao, X. (2014). Prediction of customer attrition of commercial banks based on SVM model. Procedia Computer Science, 31, 423–430. https://doi.org/10.1016/j.procs.2014.05.286

Karydas, C. G., Panagos, P., & Gitas, I. Z. (2014). A classification of water erosion models according to their geospatial characteristics. International Journal of Digital Earth, 7(3), 229–250. https://doi.org/10.1080/17538947.2012.671380

Kementerian Kesehatan Republik Indonesia. (2024). Waspada penyakit di musim hujan 2024. https://kemkes.go.id

Kurniawan, D., Nugroho, L. E., & Sulistyo, S. (2020). Sistem informasi geografis untuk pemetaan penyakit demam berdarah dengue berbasis web. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(4), 789–796. https://doi.org/10.25126/jtiik.202074266

Popi, P. (2025). Dinkes Sikka catat 50 kasus DBD di awal 2025, anak-anak paling banyak terinfeksi. https://ekorantt.com

Pratiwi, R. W., Handayani, S. F., Dairoh, D., Af’idah, D. I., & Qomaruddin, A. (2021). Analisis sentimen pada review skincare Female Daily menggunakan metode Support Vector Machine (SVM). Jurnal Informatics, Information Systems, Software Engineering and Applications, 4(1), 40–46. https://doi.org/10.20895/inista.v4i1.387

Rianda, H., Putra, D. I., & Ekariani, S. (2024). Faktor yang berpengaruh pada sistem peringatan dini gempa bumi berbasis aplikasi mobile phone. Jurnal Teknologi Informasi, 4, 1850–1861.

Ridwan, W., Ruliansyah, A., Yanuar, F., & Jajang, A. (2021). Pengembangan sistem informasi kesehatan demam berdarah dengue dengan deteksi dini di Kabupaten Bandung. Spirakel, 12(1), 1–14. https://doi.org/10.22435/spirakel.v12i1.380

Sasmita, D., Lumbanraja, F. R., Muludi, K., & Hijriani, A. (2022). Implementasi Support Vector Machine (SVM) dalam memprediksi jumlah penyakit demam berdarah. Jurnal Pepadun, 3(2), 268–277. https://doi.org/10.23960/pepadun.v3i2.123

Suyanto, S., & Prasetyo, E. (2019). Data mining: Algoritma dan implementasi menggunakan MATLAB. Andi Offset.

World Health Organization. (2023). Dengue and severe dengue. World Health Organization. https://www.who.int

Yuniar, M. C., Safila, M. I., Putra, M., Asyraf, M. H., Amelia, N. D., & Kunto, D. (2022). Pengembangan teknologi dalam bidang kesehatan. Jurnal Teknologi Sistem Informasi dan Aplikasi, 18, 49–52.

Downloads

Published

2025-12-31

How to Cite

Febriyanti Alwisye Wara, Gerfasius Take Piran, & Yohanes B.M. Darkel. (2025). Perancangan Model Support Vector Machines Berbasis Geospasial Sebagai System Peringatan Dini Penyebaran DBD Di Kabupaten Sikka. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 789–797. https://doi.org/10.55606/jutiti.v5i3.6413

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.