Ekstraksi Fitur Citra Grayscale dengan Convolutional Neural Networks

Authors

  • Diah Putri Kartikasari Universitas Islam Negeri Sumatera Utara
  • Fiqri Dian Priyatna Sinaga Universitas Islam Negeri Sumatera Utara
  • Tiara Ayu Triarta Tambak Universitas Islam Negeri Sumatera Utara
  • Zahra Humaira Kudadiri Universitas Islam Negeri Sumatera Utara
  • M. Khalil Gibran Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.55606/jutiti.v5i1.5175

Keywords:

Feature Extraction, Convolutional Neural Networks, Grayscale Image

Abstract

This study aims to explore the use of Convolutional Neural Networks (CNN) in feature extraction from grayscale images for avocado object identification. The process begins with taking a grayscale image of the avocado object to be recognized. Convolution is applied using a 3x3 horizontal Sobel kernel filter with a stride of 1 to the right, and a ReLU (Rectified Linear Unit) activation function to improve the network's ability to extract relevant features. After the convolution stage, pooling is carried out using the max pooling method to reduce the image dimension while retaining important information, thereby speeding up the training process and reducing the risk of overfitting. The processed image is then flattened to produce a feature vector that is ready to be used in classification. The results of the study indicate that the CNN approach can be used as an effective method for feature extraction and edge detection on avocado objects from grayscale images.

Downloads

Download data is not yet available.

References

Bisry, A., Ramdani, C. M. S., & Yuliyanti, S. (2024). Pengujian Parameter Algoritma Genetika Dan Feed-Forward Neural Networks Pada Permainan Ular Klasik. Mind (Multimedia Artificial Intelligent Networking Database) Journal, 9(2), 135–152.

Bowo, T. A., Syaputra, H., & Akbar, M. (2020). Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Motif Citra Batik Solo. Journal of Software Engineering Ampera, 1(2), 82–96. https://doi.org/10.51519/journalsea.v1i2.47

Christian, C. (2022). Penerapan Metode Convolutional Neural Network terhadap Citra Grayscale dan Pseudocolor RGB untuk Klasifikasi Malware. http://repository.ithb.ac.id/id/eprint/39/%0Ahttp://repository.ithb.ac.id/id/eprint/39/5/1118041_TA_Chapter3.pdf

Diputra, M. R. S., Adinugroho, S., Kom, S., Wihandika, R. C., & Kom, M. (2021). Ekstraksi Fitur Hsv Color Moments Dan Local Ternary Pattern Pada Klasifikasi Citra Makanan. Universitas Brawijaya.

Falah, H. N. Al, & Purnamasari, K. K. (2019). Implementasi Convolutional Neural Network Pada Pengenalan Tulisan Tangan. Elibrary.Unikom.Ac.Id, 14(112), 96–110.

Gunawan, G., & Stefanus. (2021). Pewarnaan Citra Grayscale dengan Histogram Specification.

Hariyono, R. C. S., & Fahmi, M. (2021). Implementasi Metode Adaptive Type-2 Fuzzy Dan Histogram Equalization Untuk Mereduksi Noise Salt And Pepper Pada Citra Bertipe Grayscale: Array. Indonesian Journal Of Informatics And Research, 2(1), 16–27.

Hibatullah, A., & Maliki, I. (2019). Penerapan Metode Convolutional Neural Network Pada Pengenalan Pola Citra Sandi Rumput. Journal of Informatics and Computer Science, 1(2), 1–8.

Kusnadi, & Atmaja, D. A. S. P. (2025). Implementation Of Grayscale Image Transformation And Histogram Equalization Methods In Digital Image Processing. Jurnal Krisnadana (Jurnal Komputer, Sistem Kendali & Jaringan), 4(2), 111–121. Https://Ejournal.Sidyanusa.Org/Index.Php/Jkdn/Article/View/739/508

Marfuah, D., Kholisatul’ulya, N., Kusudaryati, D. P. D., Wardana, A. S., & Nugroho, E. (2022). Current Trends In Intelligent Control Neural Networks For Thermal Processing (Foods): Systematic Literature Review. Journal Of Robotics And Control (Jrc), 3(4), 519–527.

Maspaeni, M., Imran, B., Hidayat, A., & Erniwati, S. (2025). Implementasi Machine Learning Untuk Mendeteksi Penyakit Katarak Menggunakan Kombinasi Ekstraksi Fitur Dan Neural Network Berdasarkan Citra. Jtim: Jurnal Teknologi Informasi Dan Multimedia, 7(2), 232–251.

Nurmaini, S., Tondas, A. E., Darmawahyuni, A., Rachmatullah, M. N., Partan, R. U., Firdaus, F., Tutuko, B., Pratiwi, F., Juliano, A. H., & Khoirani, R. (2020). Robust Detection Of Atrial Fibrillation From Short-Term Electrocardiogram Using Convolutional Neural Networks. Future Generation Computer Systems, 113, 304–317.

Prastyaningsih, Y., & Kusrini, W. (2021). Sistem Temu Kembali Citra Pada Level Roasting Biji Kopi Menggunakan Ekstraksi Fitur Warna. Jurnal Inovtek Polbeng Seri Informatika, 6(2), 222–233.

Putra, E., & Suartika, W. (2019). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1). https://doi.org/10.12962/j23373539.v5i1.15696

Sugiartawan, P., Aditama, P. W., Willdahlia, A. Y., Ardiani, N. N. D., & Wardani, N. W. (2024). Optimation Of Convolutional Neural Networks With Hyperparameter To Identification Indonesian Traditional Puppet. 2024 Ieee International Symposium On Consumer Technology (Isct), 198–202.

Wahyu, D. S., Nilogiri, A., & A’yun, Q. (2019). Implementasi Convolution Neural Network (Cnn) Untuk Klasifikasi Citra Ikan Cupang Hias. Implementasi Convolution Neural Network (Cnn) Untuk Klasifikasi Jamur Konsumsi Di Indonesia Menggunakan Keras, 1(1), 430–439.

Yopento, J., & Ernawati, E. (2022). Identifikasi Pneumonia Pada Citra X-Ray Paru-Paru Menggunakan Metode Convolutional Neural Network (Cnn) Berdasarkan Ekstraksi Fitur Sobel. Rekursif: Jurnal Informatika, 10(1), 40–47.

Downloads

Published

2025-05-31

How to Cite

Diah Putri Kartikasari, Fiqri Dian Priyatna Sinaga, Tiara Ayu Triarta Tambak, Zahra Humaira Kudadiri, & M. Khalil Gibran. (2025). Ekstraksi Fitur Citra Grayscale dengan Convolutional Neural Networks. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(1), 198–205. https://doi.org/10.55606/jutiti.v5i1.5175

Similar Articles

You may also start an advanced similarity search for this article.