Analisis Sentimen Kepuasan Pengguna Lintas Rel Terpadu (LRT) menggunakan Metode Support Vector Machine
DOI:
https://doi.org/10.55606/jutiti.v5i2.5832Keywords:
Confusion Matrix, LRT, Sentiment Classification, Support Vector Machine, TF-IDFAbstract
This study aims to analyze public sentiment toward the Palembang LRT service by utilizing user reviews available on the Google Maps platform. Sentiment analysis was conducted to understand public perceptions of service quality, which can serve as a basis for decision-making in improving public transportation services. The method employed in this research is the Support Vector Machine (SVM) algorithm combined with Term Frequency-Inverse Document Frequency (TF-IDF) for word weighting, which classifies reviews into two sentiment categories: positive and negative. A total of 500 reviews were randomly selected as the dataset and processed through a text preprocessing stage, including data cleaning, tokenization, and stopword removal to enhance data quality. The SVM model was then evaluated using an 80:20 split for training and testing, achieving an accuracy of 91%, which indicates excellent performance in identifying sentiment patterns in the Indonesian language. The findings of this study confirm that SVM-based approaches are effective and reliable for sentiment analysis in the context of public transportation. These results provide practical contributions for Palembang LRT management, as insights into public sentiment can be used as a strategic reference for decision-making, reputation management, and improving service quality based on user needs. Future research is recommended to expand the dataset, include neutral sentiment categories, and compare SVM performance with other machine learning algorithms to achieve more comprehensive and robust results.
Downloads
References
Ade Rizki Ananda. (2022). Kajian persepsi masyarakat terhadap rencana pembangunan LRT (Light Rail Transit) di Kota Medan.
Ainul Wildan, R. S., Adam Rajagede, R., & Rahmadi, R. (2021). Analisis sentimen politik berdasarkan big data dari media sosial YouTube: Sebuah tinjauan literatur. Prosiding Automata, 2(1).
Akmal, R. A., & Kurniasih, A. (2023). Penerapan algoritma klasifikasi untuk menangani data tidak seimbang pada peningkatan kualitas siswa. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 563.
Albab, M. U., P., Y. K., & Fawaiq, M. N. (2023). Optimization of the stemming technique on text preprocessing President 3 periods topic. Jurnal Transformatika, 20(2), 1–12. https://doi.org/10.26623/transformatika.v20i2.5374
Alnuaimi, A. F. A. H., & Albaldawi, T. H. K. (2024). An overview of machine learning classification techniques. BIO Web of Conferences, 97, 1–24. https://doi.org/10.1051/bioconf/20249700133
Angelina, S. J., Bijaksana, A., Negara, P., & Muhardi, H. (2023). Analisis pengaruh penerapan stopword removal pada performa klasifikasi sentimen tweet bahasa Indonesia. JUARA (Jurnal Aplikasi dan Riset Informatika), 2(1), 165–173. https://doi.org/10.26418/juara.v2i1.69680
Chen, X., Wang, Z., & Di, X. (2023). Sentiment analysis on multimodal transportation during the COVID-19 using social media data. Information (Switzerland), 14(2), 1–12. https://doi.org/10.3390/info14020113
Dahlia Winingsih, O. (2023). Ekstraksi informasi metadata statistik pada artikel penelitian ilmiah menggunakan algoritma machine learning (Program Studi Magister Teknik Elektro).
Dwinanto, R. W., A, A. S. S., & Ardianto, R. (2024). Klasifikasi berisiko stunting pada balita: Perbandingan K-Nearest Neighbor, Naïve Bayes, Support Vector Machine. Jurnal Manajemen Informatika dan Komputerisasi Akuntansi (JMIKA), 8(2), 264–273. https://doi.org/10.46880/jmika.Vol8No2.pp264-273
Fahtu Rahman, M. A., Mair, Z. R., & Sartika, D. (2024). Klasifikasi ulasan pelanggan Shopee Mall terhadap e-commerce penjualan baju batik metode Naïve Bayes. IDEALIS: Indonesian Journal of Information System, 7(2), 164–177. https://doi.org/10.36080/idealis.v7i2.3178
Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine learning method to predict the toddlers' nutritional status. Jurnal Infotel, 16(1), 32–43. https://doi.org/10.20895/infotel.v15i4.988
Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir, M. M., Nur, K., & Mridha, M. F. (2024). Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal, 6(January), 100059. https://doi.org/10.1016/j.nlp.2024.100059
Khoirunnisa, F., & Topiq, S. (2024). Masyarakat pada proses penegak hukum di Indonesia dengan menggunakan algoritma. Jurnal Teknologi Informasi dan Terapan, 12(3), 2128–2139. https://doi.org/10.23960/jitet.v12i3.4683
Lambang, S., Pradana, S., Sains, F., & Teknologi, D. (2024). Analisis sentimen masyarakat media sosial Twitter terhadap kinerja penjabat gubernur DKI Jakarta menggunakan model IndoBERT. https://repository.uinjkt.ac.id/dspace/handle/123456789/77071
Magdalena, M., & Akustia, W. (2021). Keterpaduan antarmoda transportasi untuk mendukung operasional LRT Kota Palembang. Jurnal Transportasi Multimoda, 19(1), 32–47. https://doi.org/10.25104/mtm.v19i1.1858
Naa, R., & Yuniar Rahman, A. (2024). Klasifikasi motif kain batik Papua menggunakan metode multiclass support vector machine (M-SVM). Jurnal Informatika dan Sistem Informasi, 11(3), 421–429.
Nazori Suhandi, R., Gustriansyah, R., & Destria, A. (2025). Klasifikasi penyakit TBC menggunakan metode UMAP dan K-NN. Bit-Tech, 7(3), 843–852. https://doi.org/10.32877/bt.v7i3.2227
Nurhaliza Agustina, C. A., Novita, R., Mustakim, & Rozanda, N. E. (2024). The implementation of TF-IDF and Word2Vec on booster vaccine sentiment analysis using support vector machine algorithm. Procedia Computer Science, 234, 156–163. https://doi.org/10.1016/j.procs.2024.02.162
Nurrochmah, D. S., Rahaningsih, N., Dana, R. D., & Rohmat, C. L. (2025). Penerapan algoritma Naive Bayes dalam analisis sentimen ulasan aplikasi KitaLulus di Google Play Store. Jurnal Informatika Terpadu, 11(1), 1–11. https://doi.org/10.54914/jit.v11i1.1544
Pagliara, F., & Cutolo, G. (2025). Advanced sentiment analysis techniques to detect users’ perceptions related to the "health" of a railway company: Some evidence from European countries. Journal of Intelligent and Public Data, 9(1), 1–16. https://doi.org/10.24294/jipd9242
Pameka, A., Heriansyah, R., & Astuti, L. W. (2024). Optimalisasi feature selection untuk mendeteksi penyakit diabetes mellitus menggunakan metode decision tree. JUPITER: Jurnal Penelitian dan Kajian Teknik Informatika, 589–599.
Puspasari, S., Ermatita, & Zulkardi. (2022). Machine learning for exhibition recommendation in a museum's virtual tour application. International Journal of Advanced Computer Science and Applications, 13(4), 404–412. https://doi.org/10.14569/IJACSA.2022.0130448
Putri, N. H. A., & Sahara, S. (2023). Analisis penambahan sarana penunjang kegiatan LRT untuk kemudahan mobilitas masyarakat di wilayah Palembang. Advanced in Social Humanities Research, 1(2), 31–37. https://doi.org/10.46799/adv.v1i12.147
R.D. Shafitri. (2025). MyPertamina untuk produk bersubsidi berbasis.
Ridho, M. F., & Buchari, E. (2023). Transportasi Light Rail Transit (LRT) Palembang Sumatera Selatan berdampak lingkungan dan pengembangan usaha perkotaan sektor non fare box. Bearing: Jurnal Penelitian dan Kajian Teknik Sipil, 8(1), 39. https://doi.org/10.32502/jbearing.v8i1.6268
Rohim, A., Haviz Irfani, M., Ramadhan, M., & Ubaidillah, U. (2023). Penerapan metode text mining dengan chatbot questions and answer pada PT PLN (Persero) Sumatera Selatan. Klik - Jurnal Ilmu Komputer, 4(2), 59–67. https://doi.org/10.56869/klik.v4i2.551
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





