Penerapan dan Perbandingan Algoritma SVM, Naive Bayes, dan Gradient Boosting dalam Prediksi Stroke
DOI:
https://doi.org/10.55606/jutiti.v5i3.6254Keywords:
Gradient Boosting, Machine Learning, Naive Bayes, Stroke, Support Vector MachineAbstract
Stroke is a major cardiovascular disease that significantly contributes to global mortality and disability rates. Early detection through stroke risk prediction is essential in reducing its impact. This study focuses on evaluating and comparing the performance of three machine learning algorithms—Support Vector Machine (SVM), Naive Bayes (NB), and Gradient Boosting (GB)—in predicting stroke occurrence. The research utilizes the Healthcare Stroke Dataset, which contains 5,109 records and 11 predictor variables. Modeling was performed using Orange Data Mining software, with 70% of the data allocated for training and 30% for testing. The results show that the SVM algorithm achieved the highest performance, obtaining an AUC score of 0.919 and an accuracy of 96.0%, followed by Gradient Boosting with an AUC of 0.885 and accuracy of 95.2%, and Naive Bayes with an AUC of 0.803 and accuracy of 88.2%. Therefore, SVM is identified as the most effective algorithm for predicting stroke risk within this dataset.
Downloads
References
Ananda Setyarini, D., Ayu Maharani Dyah Gayatri, A., Sri Kusuma Aditya, C., Rizki Chandranegara, D., Setyarini, D. A., M D Gayatri, A. A., & K Aditya, C. S. (2024). Stroke prediction with enhanced gradient boosting classifier and strategic hyperparameter. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(2), 477-490. https://doi.org/10.30812/matrik.v23i2.3555
Ari Wibowo, S., Andriani, W., Informatika, T., YMI Tegal Jl Pendidikan No, S., Tegal, K., & Tengah, J. (2024). Evaluasi model deep learning pada pola dataset biomedis. Jurnal Saintekom: Sains, Teknologi, Komputer Dan Manajemen, 14(2), 195-207. https://doi.org/10.33020/saintekom.v14i2.738
Asadi, F., Rahimi, M., Daeechini, A. H., & Paghe, A. (2024). The most efficient machine learning algorithms in stroke prediction: A systematic review. Health Science Reports, 7(10), e70062. https://doi.org/10.1002/hsr2.70062
Ayuningtyas, Y., & And, I. S.-J. of I. (2023). Klasifikasi penyakit stroke menggunakan support vector machine (SVM) dan particle swarm optimization (PSO). Ejournal.Unesa.Ac.Id. Retrieved from https://ejournal.unesa.ac.id/index.php/jinacs/article/view/54156
Azhar, Y., Firdausy, A. K., & Amelia, P. J. (2022). Perbandingan algoritma klasifikasi data mining untuk prediksi penyakit stroke. SINTECH (Science and Information Technology) Journal, 5(2), 191-197. https://doi.org/10.31598/sintechjournal.v5i2.1222
Guhdar, M., Ismail Melhum, A., & Luqman Ibrahim, A. (2023). Optimizing accuracy of stroke prediction using logistic regression. Journal of Technology and Informatics (JoTI), 4(2), 41-47. https://doi.org/10.37802/joti.v4i2.278
Handayani, F., & Taufiq, R. M. (2024). Komparasi algoritma menggunakan teknik SMOTE dalam melakukan klasifikasi penyakit stroke otak. Ejurnal.Umri.Ac.Id, 5(2), 367-372. https://doi.org/10.37859/coscitech.v5i2.7439
Hendro Martono, G., & Sulistianingsih, N. (2024). Enhancing stroke diagnosis with machine learning and SHAP-based explainable AI models. Knowbase: International Journal of Knowledge in Database, 04(02), 189-203.
Herlistiono, I. O., & Violina, S. (2024). Model prediksi risiko stroke menggunakan machine learning. INTECOMS: Journal of Information Technology and Computer Science, 7(4), 1230-1238. https://doi.org/10.31539/intecoms.v7i4.10942
M, S. L. J., & Subbulakshmi, P. (2024). Unveiling the potential of machine learning approaches in predicting the emergence of stroke at its onset: A predicting framework. Scientific Reports, 1-21. https://doi.org/10.1038/s41598-024-70354-1
Melnykova, N., Patereha, Y., Skopivskyi, S., Farion, M., Fedushko, S., & Drohomyretska, K. (2025). Machine learning for stroke prediction using imbalanced data. Scientific Reports, 15(1), 1-20. https://doi.org/10.1038/s41598-025-01855-w
Mizwar, A., Rahim, A., Sunyoto, A., & Arief, M. R. (2022). Stroke prediction using machine learning method with extreme gradient boosting algorithm. MATRIK: Jurnal Manajemen, Teknik Informatika Dan, 21(3), 595-606. https://doi.org/10.30812/matrik.v21i3.1666
Muhamad Indra, Siti Ernawati, & Ilham Maulana. (2024). Machine learning for stroke prediction: Evaluating the effectiveness of data balancing approaches. Jurnal Riset Informatika, 6(4), 211-222. https://doi.org/10.34288/jri.v6i4.344
Pasiolo, L., Afrianty, I., Budianita, E., Abdillah, R., Studi, P., Informatika, T., & Baru, S. (2025). Penerapan teknik SMOTE pada klasifikasi penyakit stroke dengan algoritma support vector machine. ZONAsi: Jurnal Sistem Informasi, 7(1). Retrieved from https://journal.unilak.ac.id/index.php/zn/article/download/24731/7189
Rahmawati, L., Hafid, M., & Sunandar, M. A. (2023). Analisis data mining untuk memprediksi penyakit stroke dengan algoritma Naïve Bayes. Jurnal Aplikasi Dan Teori Ilmu Komputer, 6(2), 55-60. https://doi.org/10.17509/jatikom.v6i2.49051
Sari, K., Fadli, M., Fahmi Fudholi, M., Redy Susanto, E., Ilmu Komputer, M., Teknokrat Indonesia, U., & Negeri Lampung, P. (2025). Deteksi dini stroke menggunakan machine learning. INSOLOGI: Jurnal Sains dan Teknologi, 4(4), 706-720. https://doi.org/10.55123/insologi.v4i4.5590
Sebastian, R., & Juliane, C. (2023). Comparison of data mining classification algorithms for stroke disease prediction using the SMOTE upsampling method. JUITA: Jurnal Informatika, 11(2), 311-321. https://doi.org/10.30595/juita.v11i2.17348
Wisesty, U. N., Wirayuda, T. A. B., Sthevanie, F., & Rismala, R. (2024). Analysis of data and feature processing on stroke prediction using wide range machine learning models. Jurnal Online Informatika, 9(1), 29-40. https://doi.org/10.15575/join.v9i1.1249
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




