Penerapan dan Perbandingan Algoritma SVM, Naive Bayes, dan Gradient Boosting dalam Prediksi Stroke

Authors

  • Joseph Melchior Nababan Universitas Bina Sarana Informatika
  • Iqro Mukti Arto Universitas Bina Sarana Informatika
  • Putra Satria Universitas Bina Sarana Informatika
  • Sumanto Sumanto Universitas Bina Sarana Informatika
  • Imam Budiawan Universitas Bina Sarana Informatika
  • Roida Pakpahan Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6254

Keywords:

Gradient Boosting, Machine Learning, Naive Bayes, Stroke, Support Vector Machine

Abstract

Stroke is a major cardiovascular disease that significantly contributes to global mortality and disability rates. Early detection through stroke risk prediction is essential in reducing its impact. This study focuses on evaluating and comparing the performance of three machine learning algorithms—Support Vector Machine (SVM), Naive Bayes (NB), and Gradient Boosting (GB)—in predicting stroke occurrence. The research utilizes the Healthcare Stroke Dataset, which contains 5,109 records and 11 predictor variables. Modeling was performed using Orange Data Mining software, with 70% of the data allocated for training and 30% for testing. The results show that the SVM algorithm achieved the highest performance, obtaining an AUC score of 0.919 and an accuracy of 96.0%, followed by Gradient Boosting with an AUC of 0.885 and accuracy of 95.2%, and Naive Bayes with an AUC of 0.803 and accuracy of 88.2%. Therefore, SVM is identified as the most effective algorithm for predicting stroke risk within this dataset.

Downloads

Download data is not yet available.

References

Ananda Setyarini, D., Ayu Maharani Dyah Gayatri, A., Sri Kusuma Aditya, C., Rizki Chandranegara, D., Setyarini, D. A., M D Gayatri, A. A., & K Aditya, C. S. (2024). Stroke prediction with enhanced gradient boosting classifier and strategic hyperparameter. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(2), 477-490. https://doi.org/10.30812/matrik.v23i2.3555

Ari Wibowo, S., Andriani, W., Informatika, T., YMI Tegal Jl Pendidikan No, S., Tegal, K., & Tengah, J. (2024). Evaluasi model deep learning pada pola dataset biomedis. Jurnal Saintekom: Sains, Teknologi, Komputer Dan Manajemen, 14(2), 195-207. https://doi.org/10.33020/saintekom.v14i2.738

Asadi, F., Rahimi, M., Daeechini, A. H., & Paghe, A. (2024). The most efficient machine learning algorithms in stroke prediction: A systematic review. Health Science Reports, 7(10), e70062. https://doi.org/10.1002/hsr2.70062

Ayuningtyas, Y., & And, I. S.-J. of I. (2023). Klasifikasi penyakit stroke menggunakan support vector machine (SVM) dan particle swarm optimization (PSO). Ejournal.Unesa.Ac.Id. Retrieved from https://ejournal.unesa.ac.id/index.php/jinacs/article/view/54156

Azhar, Y., Firdausy, A. K., & Amelia, P. J. (2022). Perbandingan algoritma klasifikasi data mining untuk prediksi penyakit stroke. SINTECH (Science and Information Technology) Journal, 5(2), 191-197. https://doi.org/10.31598/sintechjournal.v5i2.1222

Guhdar, M., Ismail Melhum, A., & Luqman Ibrahim, A. (2023). Optimizing accuracy of stroke prediction using logistic regression. Journal of Technology and Informatics (JoTI), 4(2), 41-47. https://doi.org/10.37802/joti.v4i2.278

Handayani, F., & Taufiq, R. M. (2024). Komparasi algoritma menggunakan teknik SMOTE dalam melakukan klasifikasi penyakit stroke otak. Ejurnal.Umri.Ac.Id, 5(2), 367-372. https://doi.org/10.37859/coscitech.v5i2.7439

Hendro Martono, G., & Sulistianingsih, N. (2024). Enhancing stroke diagnosis with machine learning and SHAP-based explainable AI models. Knowbase: International Journal of Knowledge in Database, 04(02), 189-203.

Herlistiono, I. O., & Violina, S. (2024). Model prediksi risiko stroke menggunakan machine learning. INTECOMS: Journal of Information Technology and Computer Science, 7(4), 1230-1238. https://doi.org/10.31539/intecoms.v7i4.10942

M, S. L. J., & Subbulakshmi, P. (2024). Unveiling the potential of machine learning approaches in predicting the emergence of stroke at its onset: A predicting framework. Scientific Reports, 1-21. https://doi.org/10.1038/s41598-024-70354-1

Melnykova, N., Patereha, Y., Skopivskyi, S., Farion, M., Fedushko, S., & Drohomyretska, K. (2025). Machine learning for stroke prediction using imbalanced data. Scientific Reports, 15(1), 1-20. https://doi.org/10.1038/s41598-025-01855-w

Mizwar, A., Rahim, A., Sunyoto, A., & Arief, M. R. (2022). Stroke prediction using machine learning method with extreme gradient boosting algorithm. MATRIK: Jurnal Manajemen, Teknik Informatika Dan, 21(3), 595-606. https://doi.org/10.30812/matrik.v21i3.1666

Muhamad Indra, Siti Ernawati, & Ilham Maulana. (2024). Machine learning for stroke prediction: Evaluating the effectiveness of data balancing approaches. Jurnal Riset Informatika, 6(4), 211-222. https://doi.org/10.34288/jri.v6i4.344

Pasiolo, L., Afrianty, I., Budianita, E., Abdillah, R., Studi, P., Informatika, T., & Baru, S. (2025). Penerapan teknik SMOTE pada klasifikasi penyakit stroke dengan algoritma support vector machine. ZONAsi: Jurnal Sistem Informasi, 7(1). Retrieved from https://journal.unilak.ac.id/index.php/zn/article/download/24731/7189

Rahmawati, L., Hafid, M., & Sunandar, M. A. (2023). Analisis data mining untuk memprediksi penyakit stroke dengan algoritma Naïve Bayes. Jurnal Aplikasi Dan Teori Ilmu Komputer, 6(2), 55-60. https://doi.org/10.17509/jatikom.v6i2.49051

Sari, K., Fadli, M., Fahmi Fudholi, M., Redy Susanto, E., Ilmu Komputer, M., Teknokrat Indonesia, U., & Negeri Lampung, P. (2025). Deteksi dini stroke menggunakan machine learning. INSOLOGI: Jurnal Sains dan Teknologi, 4(4), 706-720. https://doi.org/10.55123/insologi.v4i4.5590

Sebastian, R., & Juliane, C. (2023). Comparison of data mining classification algorithms for stroke disease prediction using the SMOTE upsampling method. JUITA: Jurnal Informatika, 11(2), 311-321. https://doi.org/10.30595/juita.v11i2.17348

Wisesty, U. N., Wirayuda, T. A. B., Sthevanie, F., & Rismala, R. (2024). Analysis of data and feature processing on stroke prediction using wide range machine learning models. Jurnal Online Informatika, 9(1), 29-40. https://doi.org/10.15575/join.v9i1.1249

Downloads

Published

2025-11-27

How to Cite

Joseph Melchior Nababan, Iqro Mukti Arto, Putra Satria, Sumanto Sumanto, Imam Budiawan, & Roida Pakpahan. (2025). Penerapan dan Perbandingan Algoritma SVM, Naive Bayes, dan Gradient Boosting dalam Prediksi Stroke . Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 261–272. https://doi.org/10.55606/jutiti.v5i3.6254

Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)