Klasifikasi Indikator Kesehatan Diabetes Menggunakan Algoritma Random Forest
DOI:
https://doi.org/10.55606/jutiti.v5i3.6338Keywords:
Classification, Data Mining, Diabetes, Orange, Random ForestAbstract
Diabetes continues to rise as a global health concern, highlighting the need for analytical methods that can assist in earlier and more accurate detection. This study aims to classify diabetes conditions using the Random Forest algorithm implemented through the Orange Data Mining platform. The dataset used contains various health-related attributes such as glucose levels, blood pressure, body mass index, age, and other clinical indicators associated with diabetes risk. Random Forest was selected due to its ability to produce stable models, handle large and complex datasets, and minimize overfitting by combining multiple decision trees. The research process includes data preprocessing, splitting the dataset into training and testing portions, building the Random Forest model, and evaluating its performance using metrics such as accuracy, precision, recall, F1-score, and confusion matrix. The results indicate that Random Forest delivers strong and consistent performance in classifying diabetes conditions based on the given health indicators. These findings suggest that employing data mining techniques especially Random Forest within Orange—can serve as a practical and reliable approach to support medical analysis and assist healthcare practitioners in achieving earlier and more accurate diabetes detection.
Downloads
References
Dwipa Jaya, M. K. (2023). Perbandingan Random Forest, Decision Tree, Gradient Boosting, Logistic Regression untuk klasifikasi penyakit jantung. JNATIA, 2(November), 1–5.
Hidayah, L., & Rosadi, M. I. (2024). Penerapan algoritma Random Forest untuk memprediksi jumlah santri baru. Jurnal Informatika dan Teknik Elektro Terapan, 12(3S1). https://doi.org/10.23960/jitet.v12i3s1.5237
Homepage, J., Dwinnie, C., Dwynne, C., Islam, M. J., & Universitas Islam Negeri Sultan Syarif Kasim Riau. (2024). Comparison of machine learning algorithms in diabetes risk classification. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 1(2), 54–60.
Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining untuk klasifikasi kelulusan mahasiswa dengan model K-Nearest Neighbor, Decision Tree serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. https://doi.org/10.21107/nero.v6i2.237
Huda, R. N., Fitriadi, R., & Wibowo, A. (2024). Optimization product recommendation using K-Means, Agglomerative Clustering and FP-Growth algorithm. Jurnal Teknik Informatika (JUTIF), 5(4), 953–960. https://doi.org/10.52436/1.jutif.2024.5.4.1901
Inonu, O. Y., Magda, K., & Amarudin, A. (2025). Analisis kinerja algoritma Random Forest dengan model machine learning pada dataset penyakit diabetes. EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, 15(1), 1. https://doi.org/10.36448/expert.v15i1.4312
Iskandar, R. F. N., Gutama, D. H., Wijaya, D. P., & Danianti, D. (2024). Klasifikasi menggunakan metode Random Forest untuk awal deteksi Diabetes Melitus Tipe 2. Jurnal Teknik Industri Terintegrasi, 7(3), 1620–1626. https://doi.org/10.31004/jutin.v7i3.26916
Jurnal H., & Teknologi, F. (n.d.). Penerapan Orange Data Mining untuk pembelajaran sistem gambar hewan berbasis machine learning. X(X), 42–49.
Mahmudah, M., Izza, N., Indrawati, L., Paramita, A., & Indriani, D. (2025). The contributing factors to the risk of diabetes mellitus among Indonesian urban workers. Nurse Media Journal of Nursing, 15(1), 98–109. https://doi.org/10.14710/nmjn.v15i1.56916
Mandias, G. F., & Manoppo, I. J. (2025). Analisis komparatif algoritma klasifikasi untuk prediksi diabetes menggunakan pembelajaran mesin. 27(1), 49–56.
Muharrom, M. (2023). Analisis penggunaan Orange Data Mining untuk prediksi harga USDT/BIDR Binance. Bulletin of Information Technology (BIT), 4(2), 178–184. https://doi.org/10.47065/bit.v4i2.654
Olina, Y. B., Aisah, S., Setyawati, D., Baidhowy, A. S., Nurkharistna, M., Jihad, A., & Arifianto, N. (2024). Meningkatkan kesadaran hidup sehat melalui skrining deteksi dini penyakit tidak menular di lingkungan Universitas Muhammadiyah Semarang. 4(1).
Pranadjaya, E., Pangestu, E. S., Sereati, C. O., Octaviani, S., & Darmawan, M. (2024). Perbandingan algoritma machine learning menggunakan Orange Data Mining untuk klasifikasi jenis kendaraan pada sistem tilang digital. Jurnal Elektro, 17(1), 41–47. https://doi.org/10.25170/jurnalelektro.v17i1.5429
Putra, H. (2025). Comparative study of logistic regression, Random Forest, and XGBoost for bank loan approval classification. 9(5), 2822–2835.
Putu, N., Dharmayanti, D., Darmini, A. A. A. Y., Wayan, N., Dharmapatni, K., & Keperawatan. (2024). Pengetahuan penderita diabetes mellitus tentang pencegahan ulkus diabetik melalui penyuluhan. Jurnal Abdimas ITEKES, 3(2), 70–74. https://ejournal.itekes-bali.ac.id/jai
Sahgal, A. (2024). Опыт аудита обеспечения качества и безопасности медицинской деятельности… Вестник Росздравнадзора, 4(1), 9–15.
Salsabil, M., Lutvi, N., & Eviyanti, A. (2024). Implementasi data mining dalam melakukan prediksi penyakit diabetes menggunakan metode Random Forest dan XGBoost. Jurnal Ilmiah Komputasi, 23(1), 51–58. https://doi.org/10.32409/jikstik.23.1.3507
Sari, Z. D. R., Jasmir, J., & Arvita, Y. (2024). Penerapan data mining untuk prediksi penyakit diabetes. Jurnal Informatika dan Rekayasa Komputer (JAKAKOM), 4(April), 827–834.
Sembiring, Y. A. B., & Sembiring, E. A. (2023). Implementasi data mining menggunakan algoritma Apriori dalam menentukan persediaan barang. ADA Journal of Information System Research, 1(1), 1–8. https://doi.org/10.64366/adajisr.v1i1.7
Sutarman, S., Siringoringo, R., Arisandi, D., Kurniawan, E., & Nababan, E. B. (2024). Model klasifikasi dengan Logistic Regression dan Recursive Feature Elimination pada data tidak seimbang. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(4), 735–742. https://doi.org/10.25126/jtiik.1148198
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




