Correlation between Extraction Method, Phenolic Content, and Antioxidant Activity in Red Pedada Leaves (Sonneratia caseolaris L.)

Authors

  • Danang Raharjo Universitas Duta Bangsa
  • Bagas Ardiyantoro Universitas Duta Bangsa
  • Anastasia Cindy Jovita Putri Universitas Duta Bangsa

DOI:

https://doi.org/10.55606/ijhs.v5i3.6063

Keywords:

Antioxidant, Extraction, Flavonoid, Phenolic, Sonneratia Caseolaris

Abstract

Sonneratia caseolaris L. (red pedada) is a mangrove species rich in bioactive compounds, yet its potential remains underutilized due to suboptimal extraction methods. This study systematically evaluated four extraction techniques maceration, Soxhlet, Microwave-Assisted Extraction (MAE), and Ultrasonic-Assisted Extraction (UAE) for their efficiency in recovering phenolic compounds and antioxidants from its leaves. Using 70% ethanol, extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via DPPH and ABTS assays. Results demonstrated MAE's superior performance, yielding the highest TPC (145.3 mg GAE/g), TFC (89.4 mg QE/g), and strongest antioxidant activity (DPPH IC₅₀: 18.3 µg/mL; ABTS IC₅₀: 15.2 µg/mL). UAE ranked second, followed by Soxhlet and maceration. Strong correlations between TPC/TFC and antioxidant activities confirmed phenolics as primary antioxidant contributors. The enhanced performance of MAE is attributed to its efficient cell disruption through rapid internal heating and pressure buildup, facilitating complete compound release while minimizing degradation. This study conclusively identifies MAE as the optimal method for maximizing bioactive compound recovery from S. caseolaris leaves, providing a scientific basis for its application in nutraceutical and pharmaceutical industries.

Downloads

Download data is not yet available.

References

Andrei, D., Cheregi, M., & Litescu, S. C. (2023). Antioxidant capacity assays: Chemical and cellular-based methods. Revista de Chimie, 74, 1–21. https://doi.org/10.37358/RC.23.3.8569

Andry, M., Ligo, A., Anggi, R. D., Pradita, D., Luthvia, L., Nasution, M. A., Pertiwi, N. N., & Arifin, A. (2025). The effect of different methods of maceration and microwave assisted extraction (MAE) on determining flavonoid contents of total figs (Ficus racemosa L). Journal of Pharmaceutical and Sciences, 799–809. https://doi.org/10.36490/journal-jps.com.v8i2.859

Arulselvan, P., Fard, M. T., Tan, W. S., Gothai, S., Fakurazi, S., Norhaizan, M. E., & Kumar, S. S. (2016). Role of antioxidants and natural products in inflammation. Oxidative Medicine and Cellular Longevity, 2016(1), 5276130. https://doi.org/10.1155/2016/5276130

Awad, A. M., Kumar, P., Ismail-Fitry, M. R., Jusoh, S., Ab Aziz, M. F., & Sazili, A. Q. (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants, 10(9), 1465. https://doi.org/10.3390/antiox10091465

Azwanida, N. N. (2015). A review on the extraction methods used in medicinal plants: Principle, strength and limitation. Med Aromat Plants, 4(196), 412–2167.

Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management, 10(6), 421–452. https://doi.org/10.1023/A:1021397624349

Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901. https://doi.org/10.3390/molecules21070901

Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V., & Cravotto, G. (2019). Green extraction of natural products: Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry, 118, 248–263. https://doi.org/10.1016/j.trac.2019.05.037

Christodoulou, M. C., Orellana Palacios, J. C., Hesami, G., Jafarzadeh, S., Lorenzo, J. M., Domínguez, R., Moreno, A., & Hadidi, M. (2022). Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants, 11(11), 2213. https://doi.org/10.3390/antiox11112213

Cikoš, A.-M., Jokić, S., Šubarić, D., & Jerković, I. (2018). Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Marine Drugs, 16(10), 348. https://doi.org/10.3390/md16100348

Dahibhate, N. L., Saddhe, A. A., & Kumar, K. (2019). Mangrove plants as a source of bioactive compounds: A review. The Natural Products Journal, 9(2), 86–97. https://doi.org/10.2174/2210315508666180910125328

Garcia-Vaquero, M., Ummat, V., Tiwari, B., & Rajauria, G. (2020). Exploring ultrasound, microwave and ultrasound-microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Marine Drugs, 18(3), 172. https://doi.org/10.3390/md18030172

Habib, M. A., Khatun, F., Ruma, M. K., Chowdhury, A., Silve, A. R., Rahman, A., & Hossain, M. I. (2018). A review on phytochemical constituents of pharmaceutically important mangrove plants, their medicinal uses and pharmacological activities. Vedic Research International Phytomedicine, 6(1), 1–9. https://doi.org/10.14259/pm.v6i1.220

Ilyasov, I. R., Beloborodov, V. L., Selivanova, I. A., & Terekhov, R. P. (2020). ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences, 21(3), 1131. https://doi.org/10.3390/ijms21031131

Kalor, J., Wanimbo, E., & Indrayani, E. (2025). A systematic review of bioactive compounds, traditional uses, and conservation perspectives of Sonneratia caseolaris. International Journal of Pharmaceutical and Bio-Medical Science, 5. https://doi.org/10.47191/ijpbms/v5-i5-10

Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325

Latief, M. (2019). The characterization of active compound of Pedada mangrove plants (Sonneratia caseolaris) which have the potential as natural antioxidants. Journal of Chemical Natural Resources, 1(1), 1–11. https://doi.org/10.32734/jcnar.v1i1.829

Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10). https://doi.org/10.3390/molecules21101374

Lin, W., Li, G., & Xu, J. (2023). Bio-active products from mangrove ecosystems. Marine Drugs, 21(4), 239. https://doi.org/10.3390/md21040239

López-Alarcón, C., & Denicola, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta, 763, 1–10. https://doi.org/10.1016/j.aca.2012.11.051

Nwachukwu, I. D., Sarteshnizi, R. A., Udenigwe, C. C., & Aluko, R. E. (2021). A concise review of current in vitro chemical and cell-based antioxidant assay methods. Molecules, 26(16), 4865. https://doi.org/10.3390/molecules26164865

Pangestuti, R., Siahaan, E. A., Untari, F., & Chun, B. S. (2020). Biological activities of Indonesian mangroves obtained by subcritical water extraction. IOP Conference Series: Earth and Environmental Science, 441(1), 012101. https://doi.org/10.1088/1755-1315/441/1/012101

Rangel, J. C., Benavides Lozano, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. (2013). The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Analytical Methods, 5, 5990. https://doi.org/10.1039/c3ay41125g

Roselló-Soto, E., Poojary, M. M., Barba, F. J., Koubaa, M., Lorenzo, J. M., Mañes, J., & Moltó, J. C. (2018). Thermal and non-thermal preservation techniques of tiger nuts' beverage "horchata de chufa": Implications for food safety, nutritional and quality properties. Food Research International, 105, 945–951. https://doi.org/10.1016/j.foodres.2017.12.014

Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047

Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932

Srivastava, N., Singh, A., Kumari, P., Nishad, J. H., Gautam, V. S., Yadav, M., Bharti, R., Kumar, D., & Kharwar, R. N. (2021). Advances in extraction technologies: Isolation and purification of bioactive compounds from biological materials. In Natural bioactive compounds (pp. 409–433). Elsevier. https://doi.org/10.1016/B978-0-12-820655-3.00021-5

Tsubaki, S., Oono, K., Hiraoka, M., Onda, A., & Mitani, T. (2016). Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chemistry, 210, 311–316. https://doi.org/10.1016/j.foodchem.2016.04.121

Van Nguyen, C., Duong, N. T., Dai, X.-T. T., Nguyen, K. T., & Le, C.-T. T. (2024). Optimization of ultrasound-assisted extraction using response surface methodology and quantification of polyphenol compounds in Avicennia officinalis L. from Vietnam. Pharmacia, 71, 1–9. https://doi.org/10.3897/pharmacia.71.e115528

Veiko, A. G., Lapshina, E. A., & Zavodnik, I. B. (2021). Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin. Molecular and Cellular Biochemistry, 476(12), 4287–4299. https://doi.org/10.1007/s11010-021-04243-w

Yeo, J., & Shahidi, F. (2019). Revisiting DPPH (2,2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations. Journal of Food Bioactives, 7. https://doi.org/10.31665/JFB.2019.7196

Yusoff, I. M., Taher, Z. M., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268

Zhou, W., Peng, C., Wang, D., Li, J., Tu, Z., & Zhang, L. (2022). Interaction mechanism between OVA and flavonoids with different hydroxyl groups on B-ring and effect on antioxidant activity. Foods, 11(9), 1302. https://doi.org/10.3390/foods11091302

Downloads

Published

2025-11-30

How to Cite

Danang Raharjo, Bagas Ardiyantoro, & Anastasia Cindy Jovita Putri. (2025). Correlation between Extraction Method, Phenolic Content, and Antioxidant Activity in Red Pedada Leaves (Sonneratia caseolaris L.). International Journal Of Health Science, 5(3), 457–468. https://doi.org/10.55606/ijhs.v5i3.6063

Similar Articles

You may also start an advanced similarity search for this article.